Skip to main content
Log in

Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Smart, molecularly structured materials with remote-controllable properties and functionalities attract particular attention and may enable advanced applications. In this respect, the embedment of stimuli-responsive molecules, such as azobenzenes, spiropyrans or diarylethenes, in metal-organic frameworks (MOFs) is a very fascinating approach, resulting in easily accessible photoswitchable, nanoporous hybrid materials. It is an attractive alternative to the incorporation of the smart moieties in the MOF scaffold, which usually demands complex synthetic efforts. Here, the opportunities, properties and perspectives of the embedment of photochromic molecules in MOF pores are reviewed. In addition to presenting a straightforward route to prepare smart materials with, e.g., photoswitchable adsorption properties that can be used for remote-controllable membrane separation, the photoswitch@MOF compounds also represent unique model systems to investigate the dye as well as the MOF properties and their interactions with each other. For instance, the MOF pores possess a polarity similar to a solvent, so that the optical properties of the resulting materials may be influenced by a careful choice of the respective host material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  2. B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1989, 111, 5962–5964.

    Article  CAS  Google Scholar 

  3. B. F. Abrahams, B. F. Hoskins, D. M. Michail and R. Robson, Nature, 1994, 369, 727–729.

    Article  CAS  Google Scholar 

  4. H. Li, M. Eddaoudi, A. Thomas, L. Groy and O. M. Yaghi, J. Am. Chem. Soc., 1998, 120, 8571–8572.

    Article  CAS  Google Scholar 

  5. M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa and K. Seki, Angew. Chem., Int. Ed. Engl., 1997, 36, 1725–1727.

    Article  CAS  Google Scholar 

  6. C. Ninclaus, C. Serre, D. Riou and G. Ferey, C. R. Acad. Sci., Ser. IIc: Chim., 1998, 1, 551–556.

    CAS  Google Scholar 

  7. J.-C. Tan and B. Civalleri, CrystEngComm, 2015, 17, 197–198.

    Article  CAS  Google Scholar 

  8. S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O. ‘Keeffe, M. P. Suh and J. Reedijk, Pure Appl. Chem., 2013, 85, 1715–1724.

    Article  CAS  Google Scholar 

  9. C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Férey and M. Latroche, J. Am. Chem. Soc., 2010, 132, 2991–2997.

    Article  CAS  PubMed  Google Scholar 

  10. M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chem. Rev., 2012, 112, 782–835.

    Article  CAS  PubMed  Google Scholar 

  11. H. Wu, R. S. Reali, D. A. Smith, M. C. Trachtenberg and J. Li, Chem.–Eur. J., 2010, 16, 13951–13954.

    Article  CAS  PubMed  Google Scholar 

  12. J. R. Li, J. Sculley and H. C. Zhou, Chem. Rev., 2012, 112, 869–932.

    Article  CAS  PubMed  Google Scholar 

  13. L. Alaerts, M. Maes, L. Giebeler, P. A. Jacobs, J. A. Martens, J. F. M. Denayer, C. E. A. Kirschhock and D. E. De Vos, J. Am. Chem. Soc., 2008, 130, 14170–14178.

    Article  CAS  PubMed  Google Scholar 

  14. M. Maes, F. Vermoortele, L. Alaerts, S. Couck, C. E. A. Kirschhock, J. F. M. Denayer and D. E. De Vos, J. Am. Chem. Soc., 2010, 132, 15277–15285.

    Article  CAS  PubMed  Google Scholar 

  15. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  16. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle and G. Férey, Angew. Chem., Int. Ed., 2006, 45, 5974–5978.

    Article  CAS  Google Scholar 

  17. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur and R. Gref, Nat. Mater., 2010, 9, 172–178.

    Article  CAS  PubMed  Google Scholar 

  18. O. M. Yaghi, M. O. ‘Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–714.

    Article  CAS  PubMed  Google Scholar 

  19. D. Zhao, D. Yuan, R. Krishna, J. M. van Baten and H.-C. Zhou, Chem. Commun., 2010, 46, 7352.

    Article  CAS  Google Scholar 

  20. S. Ma, D. Sun, D. Yuan, X.-S. Wang and H.-C. Zhou, J. Am. Chem. Soc., 2009, 131, 6445–6451.

    Article  CAS  PubMed  Google Scholar 

  21. C. Park, K. Oh, S. C. Lee and C. Kim, Angew. Chem., Int. Ed., 2007, 46, 1455–1457.

    Article  CAS  Google Scholar 

  22. S. Angelos, Y.-W. Yang, N. M. Khashab, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2009, 131, 11344–11346.

    Article  CAS  PubMed  Google Scholar 

  23. T. D. Nguyen, Y. Liu, S. Saha, K. C.-F. Leung, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2007, 129, 626–634.

    Article  CAS  PubMed  Google Scholar 

  24. T. D. Nguyen, H.-R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu, J. F. Stoddart and J. I. Zink, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10029–10034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Q.-L. Zhu, T.-L. Sheng, R.-B. Fu, S.-M. Hu, L. Chen, C.-J. Shen, X. Ma and X.-T. Wu, Chem.–Eur. J., 2011, 17, 3358–3362.

    Article  CAS  PubMed  Google Scholar 

  26. S. Yagai and A. Kitamura, Chem. Soc. Rev., 2008, 37, 1520.

    Article  CAS  PubMed  Google Scholar 

  27. D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2009, 131, 1686–1688.

    Article  CAS  PubMed  Google Scholar 

  28. J.-C. Boyer, C.-J. Carling, B. D. Gates and N. R. Branda, J. Am. Chem. Soc., 2010, 132, 15766–15772.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Hirshberg, C. R. Hebd. Seances Acad. Sci., 1950, 116, 903–904.

    Google Scholar 

  30. H. Bouas-Laurent and H. Dürr, Pure Appl. Chem., 2001, 73, 639–665.

    Article  CAS  Google Scholar 

  31. C. Li, Y. Zhang, J. Hu, J. Cheng and S. Liu, Angew. Chem., Int. Ed., 2010, 49, 5120–5124.

    Article  CAS  Google Scholar 

  32. B. Liao, P. Long, B. He, S. Yi, B. Ou, S. Shen and J. Chen, J. Mater. Chem. C, 2013, 1, 3716–3721.

    Article  CAS  Google Scholar 

  33. J. Chen, F. Zeng, S. Wu, J. Zhao, Q. Chen and Z. Tong, Chem. Commun., 2008, 13, 5580–5582.

    Article  CAS  Google Scholar 

  34. L. Zhu, M.-Q. Zhu, J. K. Hurst and A. D. Q. Li, J. Am. Chem. Soc., 2005, 127, 8968–8970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 843–845.

    Article  CAS  PubMed  Google Scholar 

  36. D.-J. Chung, Y. Ito and Y. Imanishi, J. Appl. Polym. Sci., 1994, 51, 2027–2033.

    Article  Google Scholar 

  37. M. Moniruzzaman, C. J. Sabey and G. F. Fernando, Polymer, 2007, 48, 255–263.

    Article  CAS  Google Scholar 

  38. R. Klajn, Chem. Soc. Rev., 2014, 43, 148–184.

    Article  CAS  PubMed  Google Scholar 

  39. H. R. Allcock and C. Kim, Macromolecules, 1991, 24, 2846–2851.

    Article  CAS  Google Scholar 

  40. Y. J. Oh, J. A. Nam, A. Al-Nahain, S. Lee, I. In and S. Y. Park, Macromol. Rapid Commun., 2012, 33, 1958–1963.

    Article  CAS  PubMed  Google Scholar 

  41. F. Marlow, K. Hoffmann and J. Caro, Adv. Mater., 1997, 9, 567–570.

    Article  Google Scholar 

  42. K. Weh, M. Noack, K. Hoffmann, K.-P. Schröder and J. Caro, Microporous Mesoporous Mater., 2002, 54, 15–26.

    Article  CAS  Google Scholar 

  43. K. Hoffmann, U. Resch-Genger and F. Marlow, Microporous Mesoporous Mater., 2000, 41, 99–106.

    Article  CAS  Google Scholar 

  44. I. Casades, S. Constantine, D. Cardin, H. García, A. Gilbert and F. Márquez, Tetrahedron, 2000, 56, 6951–6956.

    Article  CAS  Google Scholar 

  45. I. Casades, M. Alvaro, H. García and M. N. Pillai, Photochem. Photobiol. Sci., 2002, 1, 219–223.

    Article  CAS  PubMed  Google Scholar 

  46. C. Schomburg, M. Wark, Y. Rohlfing, G. Schulz-Ekloff and D. Wöhrle, J. Mater. Chem., 2001, 11, 2014–2021.

    Article  CAS  Google Scholar 

  47. A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A. M. Schneider and P. Behrens, Eur. J. Inorg. Chem., 2012, 2012, 790–796.

    Article  CAS  Google Scholar 

  48. C. C. Epley, K. L. Roth, S. Lin, S. R. Ahrenholtz, T. Z. Grove and A. J. Morris, Dalton Trans., 2017, 46, 4917–4922.

    Article  CAS  PubMed  Google Scholar 

  49. J. Zhang, L. Wang, N. Li, J. Liu, W. Zhang, Z. Zhang, N. Zhou and X. Zhu, CrystEngComm, 2014, 16, 6547–6551.

    Article  CAS  Google Scholar 

  50. A. Modrow, D. Zargarani, R. Herges and N. Stock, Dalton Trans., 2011, 40, 4217.

    Article  CAS  PubMed  Google Scholar 

  51. J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko and H.-C. Zhou, J. Am. Chem. Soc., 2012, 134, 99–102.

    Article  CAS  PubMed  Google Scholar 

  52. A. B. Kanj, K. Müller and L. Heinke, Macromol. Rapid Commun., 2017, 1700239.

    Google Scholar 

  53. A. Modrow, D. Zargarani, R. Herges and N. Stock, Dalton Trans., 2012, 41, 8690.

    Article  CAS  PubMed  Google Scholar 

  54. L. Heinke, M. Cakici, M. Dommaschk, S. Grosjean, R. Herges, S. Bräse and C. Wöll, ACS Nano, 2014, 8, 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  55. L. Heinke, J. Phys. D: Appl. Phys., 2017, 50, 193004.

    Article  CAS  Google Scholar 

  56. Z. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro and L. Heinke, Nat. Commun., 2016, 7, 13872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. K. Müller, J. Helfferich, F. Zhao, R. Verma, A. B. Kanj, V. Meded, D. Bléger, W. Wenzel and L. Heinke, Adv. Mater., 2018, 30, 1706551.

    Article  CAS  Google Scholar 

  58. Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse, K. Reuter and C. Wöll, Phys. Chem. Chem. Phys., 2015, 17, 14582–14587.

    Article  CAS  PubMed  Google Scholar 

  59. S. Castellanos, A. Goulet-Hanssens, F. Zhao, A. Dikhtiarenko, A. Pustovarenko, S. Hecht, J. Gascon, F. Kapteijn and D. Bléger, Chem.–Eur. J., 2016, 22, 746–752.

    Article  CAS  PubMed  Google Scholar 

  60. S. Castellanos, F. Kapteijn and J. Gascon, CrystEngComm, 2016, 18, 4006–4012.

    Article  CAS  Google Scholar 

  61. C. L. Jones, A. J. Tansell and T. Easun, J. Mater. Chem. A, 2016, 4, 6714–6723.

    Article  CAS  Google Scholar 

  62. O. S. Bushuyev, T. Friščić and C. J. Barrett, CrystEngComm, 2016, 18, 7204–7211.

    Article  CAS  Google Scholar 

  63. D. Bléger, Macromol. Chem. Phys., 2016, 217, 189–198.

    Article  CAS  Google Scholar 

  64. R. D. Mukhopadhyay, V. K. Praveen and A. Ajayaghosh, Mater. Horiz., 2014, 1, 572–576.

    Article  CAS  Google Scholar 

  65. K. Ohara, Y. Inokuma and M. Fujita, Angew. Chem., Int. Ed., 2010, 49, 5507–5509.

    Article  CAS  Google Scholar 

  66. N. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. Isoda and S. Kitagawa, J. Am. Chem. Soc., 2012, 134, 4501–4504.

    Article  CAS  PubMed  Google Scholar 

  67. D. N. Dybtsev, H. Chun and K. Kim, Angew. Chem., Int. Ed., 2004, 43, 5033–5036.

    Article  CAS  Google Scholar 

  68. T. Uemura, G. Washino, N. Yanai and S. Kitagawa, Chem. Lett., 2013, 42, 222–223.

    Article  CAS  Google Scholar 

  69. D. Hermann, H. Emerich, R. Lepski, D. Schaniel and U. Ruschewitz, Inorg. Chem., 2013, 52, 2744–2749.

    Article  CAS  PubMed  Google Scholar 

  70. C. Volkringer, M. Meddouri, T. Loiseau, N. Guillou, J. Marrot, G. Férey, M. Haouas, F. Taulelle, N. Audebrand and M. Latroche, Inorg. Chem., 2008, 47, 11892–11901.

    Article  CAS  PubMed  Google Scholar 

  71. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, Chem.–Eur. J., 2004, 10, 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  72. T. Nägele, R. Hoche, W. Zinth and J. Wachtveitl, Chem. Phys. Lett., 1997, 272, 489–495.

    Article  Google Scholar 

  73. M. Kojima, M. Nakajoh, S. Nebashi and N. Kurita, Res. Chem. Intermed., 2004, 30, 181–190.

    Article  CAS  Google Scholar 

  74. I. M. Walton, J. M. Cox, J. A. Coppin, C. M. Linderman, D. G. (Dan) Patel, J. B. Benedict, H. Ren and G. Zhu, Chem. Commun., 2013, 49, 8012–8014.

    Article  CAS  Google Scholar 

  75. S. Kobatake, T. Yamada, K. Uchida, N. Kato and I. Irie, J. Am. Chem. Soc., 1999, 121, 2380–2386.

    Article  CAS  Google Scholar 

  76. T. Yamada, S. Kobatake and M. Irie, Bull. Chem. Soc. Jpn., 2000, 73, 2179–2184.

    Article  CAS  Google Scholar 

  77. E. Fischer and Y. Hirshberg, J. Chem. Soc., 1952, 4522–4524.

    Google Scholar 

  78. O. Chaudé and R. Rumpf, C. R. Hebd. Seances Acad. Sci., 1953, 236, 697–699.

    Google Scholar 

  79. H. A. Schwartz, S. Olthof, D. Schaniel, K. Meerholz and U. Ruschewitz, Inorg. Chem., 2017, 56, 13100–13110.

    Article  CAS  PubMed  Google Scholar 

  80. L. R. Snyder, High Performance Liquid Chromatography, Academic Press, New York, 3rd edn, 1983.

    Google Scholar 

  81. P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill and M. J. Styles, Chem. Soc. Rev., 2014, 43, 5513–5560.

    Article  CAS  PubMed  Google Scholar 

  82. J. L. Zhuang, A. Terfort and C. Wöll, Coord. Chem. Rev., 2015, 307, 391–424.

    Article  CAS  Google Scholar 

  83. Y.-S. Li, H. Bux, A. Feldhoff, G.-L. Li, W.-S. Yang and J. Caro, Adv. Mater., 2010, 22, 3322–3326.

    Article  CAS  PubMed  Google Scholar 

  84. J.-L. Zhuang, D. Ceglarek, S. Pethuraj and A. Terfort, Adv. Funct. Mater., 2011, 21, 1442–1447.

    Article  CAS  Google Scholar 

  85. F. Zhang, X. Zou, W. Feng, X. Zhao, X. Jing, F. Sun, H. Ren and G. Zhu, J. Mater. Chem., 2012, 22, 25019–25026.

    Article  CAS  Google Scholar 

  86. Y.-S. Li, F.-Y. Liang, H. Bux, A. Feldhoff, W.-S. Yang and J. Caro, Angew. Chem., Int. Ed., 2010, 49, 548–551.

    Article  CAS  Google Scholar 

  87. A. Knebel, L. Sundermann, A. Mohmeyer, I. Strauß, S. Friebe, P. Behrens and J. Caro, Chem. Mater., 2017, 29, 3111–3117.

    Article  CAS  Google Scholar 

  88. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, S. Sternemann, F. Evers, D. Zacher, R. A. Fischer and C. Wöll, J. Am. Chem. Soc., 2007, 129, 15118–15119.

    Article  CAS  PubMed  Google Scholar 

  89. L. Heinke, M. Tu, S. Wannapaiboon, R. A. Fischer and C. Wöll, Microporous Mesoporous Mater., 2014, 216, 200–215.

    Article  CAS  Google Scholar 

  90. J. Liu, M. Paradinas, L. Heinke, M. Buck, C. Ocal, V. Mugnaini and C. Wöll, ChemElectroChem, 2016, 3, 713–718.

    Article  CAS  Google Scholar 

  91. C. Munuera, O. Shekhah, H. Wang, C. Wöll and C. Ocal, Phys. Chem. Chem. Phys., 2008, 10, 7257.

    Article  CAS  PubMed  Google Scholar 

  92. S. Hurrle, S. Friebe, J. Wohlgemuth, C. Wöll, J. Caro and L. Heinke, Chem.–Eur. J., 2017, 23, 2294–2298.

    Article  CAS  PubMed  Google Scholar 

  93. D. Bléger, J. Schwarz, A. M. Brouwer and S. Hecht, J. Am. Chem. Soc., 2012, 134, 20597–20600.

    Article  PubMed  CAS  Google Scholar 

  94. K. Müller, J. Wadhwa, J. Singh Malhi, L. Schöttner, A. Welle, H. Schwartz, D. Hermann, U. Ruschewitz and L. Heinke, Chem. Commun., 2017, 53, 8070–8073.

    Article  Google Scholar 

  95. C. Knie, M. Utecht, F. Zhao, H. Kulla, S. Kovalenko, A. M. Brouwer, P. Saalfrank, S. Hecht and D. Bléger, Chem.–Eur. J., 2014, 20, 16492–16501.

    Article  CAS  PubMed  Google Scholar 

  96. D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research, Springer International Publishing, Basel, 1st edn, 2015.

    Google Scholar 

  97. Z. Wang, S. Grosjean, S. Bräse and L. Heinke, ChemPhysChem, 2015, 16, 3779–3783.

    Article  CAS  PubMed  Google Scholar 

  98. K. Müller, A. Knebel, F. Zhao, D. Bléger, J. Caro and L. Heinke, Chem.–Eur. J., 2017, 23, 5434–5438.

    Article  PubMed  CAS  Google Scholar 

  99. Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse, K. Reuter and C. Wöll, Phys. Chem. Chem. Phys., 2015, 17, 14582–14587.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L. H. is grateful for the support by the Volkswagenstiftung.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Ruschewitz or L. Heinke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, H.A., Ruschewitz, U. & Heinke, L. Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives. Photochem Photobiol Sci 17, 864–873 (2018). https://doi.org/10.1039/c7pp00456g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00456g

Navigation