Skip to main content

Advertisement

Log in

Photophysical properties of benzanthrone derivatives: effect of substituent, solvent polarity and hydrogen bonding

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Benzanthrone derivatives are potential fluorescent probes for various chemical and biological environments. A mechanistic understanding of their photophysical properties is pivotal for designing an efficient fluorescence sensor based on the benzanthrone framework. In this study, we report on the effect of chemical substitution on the photophysical properties of two benzanthrone derivatives, namely, 3-(N′-methyl)-piperazino-7H-benzo[de]anthracen-7-one [Me-PBA] and 3-(N′-phenyl)-piperazino-7H-benzo[de]anthracen-7-one [Ph-PBA] in different solvents and solvent mixtures of varying polarities and proticities. Both benzanthrone derivatives show interesting solvent-dependent photophysical properties. Although both derivatives exhibit strong intramolecular charge transfer (ICT) characteristics in the excited state, the extent of the charge transfer is significantly influenced by the nature of the chemical substitution. Modulation of photophysical parameters as a function of solvent properties led us to propose that ICT is affected by solvent polarity and hydrogen bonding. From the viscosity effect, it is revealed that the weaker emission of Ph-PBA compared to Me-PBA in polar solvents is primarily due to the non-radiative torsional motion of the phenyl group in the former derivative. In protic solvents, intermolecular hydrogen bonding imparts strong non-radiative deactivation to both derivatives, thus rendering a weak fluorescence yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Krasovitskii and B. M. Bolotin, Organic luminescent materials, Wiley-VCH Publishers, New York, 1988.

    Google Scholar 

  2. U. H. F. Bunz, Chem. Rev., 2000, 100, 1605.

    Article  CAS  PubMed  Google Scholar 

  3. G. Hughes and M. R. Bryce, J. Mater. Chem., 2005, 15, 94.

    Article  CAS  Google Scholar 

  4. T. W. Kelley, P. F. Baude, C. Gerlach, D. Muyres, A. H. Michael, E. V. Dennis and D. T. Steven, Chem. Mater., 2004, 16, 4413.

    Article  CAS  Google Scholar 

  5. Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953.

    Article  CAS  PubMed  Google Scholar 

  6. S. Logothetidis, Mater. Sci. Eng., B, 2008, 152, 96.

    Article  CAS  Google Scholar 

  7. E. M. Kirilova, I. Meirovics and S. V. Belyakov, Chem. Heterocycl. Compd., 2002, 38, 789.

    Article  CAS  Google Scholar 

  8. E. M. Kirilova, I. Kalnina, G. K. Kirilov and I. Meirovics, J. Fluoresc., 2008, 18, 645.

    Article  CAS  PubMed  Google Scholar 

  9. F. Carlini, C. Paffoni and G. Boffa, Dyes Pigm., 1982, 3, 59.

    Article  CAS  Google Scholar 

  10. V. Bojinov and I. Grabchev, Org. Lett., 2003, 5, 2185.

    Article  CAS  PubMed  Google Scholar 

  11. I. Grabchev and I. Moneva, Dyes Pigm., 1998, 38, 155.

    Article  Google Scholar 

  12. I. Grabchev, V. Bojinov and I. Moneva, J. Mol. Struct., 1998, 471, 19.

    Article  Google Scholar 

  13. X. Yang, W. H. Liu, W. J. Jin, G. L. Shen and R. Q. Yu, Spectrochim. Acta, Part A, 1999, 55, 2719.

    Article  Google Scholar 

  14. S. Dumas, I. Grabchev, P. Stoikova, J. Chauvin and J. M. Chovelon, J. Photochem. Photobiol., A, 2009, 201, 237.

    Article  CAS  Google Scholar 

  15. D. Staneva, R. Betcheva and J. M. Chovelon, J. Photochem. Photobiol., A, 2006, 183, 159.

    Article  CAS  Google Scholar 

  16. D. Staneva and R. Becheva, Dyes Pigm., 2007, 74, 148.

    Article  CAS  Google Scholar 

  17. D. Staneva, R. Betcheva and J. M. Chovelon, J. Appl. Polym. Sci., 2007, 106, 1950.

    Article  CAS  Google Scholar 

  18. D. Staneva, E. V. Tonkova, I. Mohamad Saleh, M. S. I. Makki, T. R. Sobahi, R. Mohamed Abdel-Rahman, M. A. Abdullah and I. Grabchev, J. Photochem. Photobiol., B, 2015, 143, 44.

    Article  CAS  Google Scholar 

  19. O. Ryzhova, V. Kateryna, V. Trusova, E. Kirilova, G. Kirilov, G. Gorbenko and P. Kinnunen, Methods Appl. Fluoresc., 2016, 4, 034007.

    Article  PubMed  CAS  Google Scholar 

  20. K. Vus, V. Trusova, G. Gorbenko, E. Kirilova, G. Kirilov, I. Kalnina and P. Kinnunen, Chem. Phys. Lett., 2012, 532, 110.

    Article  CAS  Google Scholar 

  21. O. Zhytniakivska, V. Trusova, G. Gorbenko, E. Kirilova, I. Kalnina, G. K. Kirilov and P. Kinnunen, J. Lumin., 2014, 146, 307.

    Article  CAS  Google Scholar 

  22. T. Konstantinova, P. Peallier, H. Konstantinov and D. Staneva, Polym. Degrad. Stab., 1995, 48, 161.

    Article  CAS  Google Scholar 

  23. I. Grabchev, I. Moneva, I. Kozlov and G. Elyashevich, Mater. Res., 2001, 4, 301.

    CAS  Google Scholar 

  24. I. Grabchev, I. Moneva, E. Wolarz, D. Bauman and S. Stouyanov, Z. Naturforsch., 2001, 56, 291.

    Article  CAS  Google Scholar 

  25. I. Grabchev, I. Moneva, E. Wolarz and D. Bauman, Dyes Pigm., 2003, 58, 1.

    Article  CAS  Google Scholar 

  26. P. Kapusta, O. Machalicky, R. Hrdina, M. Nepras, B. Matthew Zimmt and V. Fidler, J. Phys. Chem., 2003, 107, 9740.

    Article  CAS  Google Scholar 

  27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, PlenumPress, New York, 1983.

    Book  Google Scholar 

  28. B. Siddlingeshwar, S. M. Hanagodimath, E. M. Kirilova and G. K. Kirilov, J. Quant. Spectrosc. Radiat. Transfer, 2011, 112, 448.

    Article  CAS  Google Scholar 

  29. D. Patra, N. N. Malaeb, J. M. Haddadin and J. M. Kurth, J. Fluoresc., 2012, 22, 707.

    Article  CAS  Google Scholar 

  30. D. Patra and C. Barakat, Spectrochim. Acta, Part A, 2011, 79, 1034.

    Article  CAS  Google Scholar 

  31. A. C. Testa, J. Lumin., 1991, 50, 243.

    Article  CAS  Google Scholar 

  32. P. R. Bangal, S. Panja and S. Chakravorti, J. Photochem. Photobiol., A, 2001, 139, 5.

    Article  CAS  Google Scholar 

  33. H. Ke-Li and Z. Guang-Jiu, Hydrogen Bonding and Transfer in the Excited State, John Wiley & Sons Ltd., UK, 2nd edn, 2011.

  34. F. A. S. Chipem, A. Mishra and G. Krishnamoorthy, Phys. Chem. Chem. Phys., 2012, 14, 8775.

    Article  CAS  PubMed  Google Scholar 

  35. S. Senthilkumar, S. Nath and H. Pal, Photochem. Photobiol., 2004, 80, 104.

    Article  CAS  PubMed  Google Scholar 

  36. B. Manna, R. Ghosh and D. K. Palit, J. Phys. Chem. C, 2016, 120, 7299.

    Article  CAS  Google Scholar 

  37. E. Z. Lippert, Naturforsch., 1955, 10, 541.

    Article  Google Scholar 

  38. N. Mataga, Y. Kaifu and M. Koizumi, Bull. Chem. Soc. Jpn., 1956, 29, 465.

    Article  CAS  Google Scholar 

  39. J. A. Dean, Lange's Handbook of Chemistry, McGraw-Hill, New York, 1987.

    Google Scholar 

  40. H. Masuhara, T. Hino and N. Mataga, J. Phys. Chem., 1975, 79, 994.

    Article  CAS  Google Scholar 

  41. H. Masuhara and N. Mataga, Acc. Chem. Res., 1981, 14, 312.

    Article  CAS  Google Scholar 

  42. C. F. Chapman, R. S. Fee and M. Maroncelli, J. Phys. Chem., 1995, 99, 4811.

    Article  CAS  Google Scholar 

  43. E. Lippert, Phys. Chem., 1957, 61, 962.

    CAS  Google Scholar 

  44. N. Mataga, Bull. Chem. Soc. Jpn., 1963, 36, 654.

    Article  CAS  Google Scholar 

  45. N. Mataga and T. Kubota, Molecular Interactions and Electronic Spectra, Dekker, New York, 1970.

    Google Scholar 

  46. J. T. Edward, J. Chem. Educ., 1970, 47, 262.

    Article  Google Scholar 

  47. A. K. Satpati, M. Kumbhakar, D. K. Maity and H. Pal, Chem. Phys. Lett., 2005, 407, 114.

    Article  CAS  Google Scholar 

  48. Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev., 2003, 103, 3899.

    Article  PubMed  Google Scholar 

  49. P. K. Singh, M. Kumbhakar, H. Pal and S. Nath, J. Phys. Chem. B, 2010, 114, 5920.

    Article  CAS  PubMed  Google Scholar 

  50. R. A. Ghotli, A. R. A. Aziz, I. M. Atadashi, D. B. Hasan, P. S. Kong and M. K. Aroua, J. Ind. Eng. Chem., 2015, 21, 1039

    Article  CAS  Google Scholar 

  51. http://www.aciscience.org/docs/physical_pro-perties_of_glycerine_and_its_solutions.pdf.

Download references

Acknowledgements

The authors are grateful to the deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs. Authors BS and SN thank Dr. Sukhendu Nath and Dr. Rajib Ghosh of Radiation & Photochemistry Division of BARC, Mumbai for their continuous help in experiments and preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Siddlingeshwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivraj, Siddlingeshwar, B., Kirilova, E.M. et al. Photophysical properties of benzanthrone derivatives: effect of substituent, solvent polarity and hydrogen bonding. Photochem Photobiol Sci 17, 453–464 (2018). https://doi.org/10.1039/c7pp00392g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00392g

Navigation