Issue 31, 2016

Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage

Abstract

Novel branched carbon encapsulated MnS (MnS@C) nanochains were prepared by an in situ co-pyrolysis method. The morphology and structure of the MnS@C nanochains were mainly characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the prepared MnS@C nanochains possess interesting branched structures, which are constructed by interconnected MnS@C nanoparticles with a diameter of ca. 200–400 nm. More interestingly, the MnS@C nanoparticles have novel “pomegranate-like” structures, in which inner cores are not made of whole nanoparticles but composed of many MnS nanoparticles. The formation mechanism of MnS@C should be attributed to an Oriented Attachment (OA) mechanism by investigating various intermediate products obtained by controlling the reaction conditions. The branched MnS@C nanochains after annealing (MnS@C-800) demonstrated perfect cycling stability and long cycle life when used as anode materials for lithium-ion batteries (LIBs). At a current density of 50 mA g−1, the stable specific capacity is around 545 mA h g−1 while the pure MnS anode experiences a drastic drop quickly to 300 mA h g−1 at the initial few cycles. At 500 mA g−1, the reversible specific capacity is ca. 318 mA h g−1 at the initial cycle and is maintained at ca. 200 mA h g−1 after 800 cycles.

Graphical abstract: Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2016
Accepted
29 Jun 2016
First published
30 Jun 2016

J. Mater. Chem. A, 2016,4, 12098-12105

Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage

J. Ning, D. Zhang, H. Song, X. Chen and J. Zhou, J. Mater. Chem. A, 2016, 4, 12098 DOI: 10.1039/C6TA04441G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements