Skip to main content
Log in

Exfoliation and supramolecular functionalization of graphene with an electron donor perylenediimide derivative

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The liquid exfoliation of graphite to few layered graphene sheets together with the non-covalent supramolecular functionalization of exfoliated graphene by the synthesized N,N′-di(2-ethylhexyl)-1-(N′′′′-methylpiperazin-N′′′-yl)perylene-3,4,9,10-tetracarboxydiimide (Pip-PDI) is reported. The aromatic Pip-PDI has the ability to non-covalently interact with the exfoliated graphene sheets, stabilizing them and preventing their reassembly. On the other hand, the presence of the piperazine moiety on the bay position of the PDI core makes it an ideal electron donor, nicely coupled with the electron accepting exfoliated graphene, hence, forming a novel donor–acceptor nanoensemble, which was characterized by complementary spectroscopic and microscopy techniques. Theoretical calculations predicted the absence of a meaningful charge-separated state within the Pip-PDI/graphene ensemble, which was also proven by time-resolved fluorescence and transient absorption measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. A. K. Geim, and K. S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, 183–191.

    Google Scholar 

  2. A. K. Geim, Graphene: Status and Prospects, Science., 2009, 324, 1530–1534.

    Google Scholar 

  3. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev., 2010, 110, 132–145.

    Google Scholar 

  4. X. Wan, Y. Huang, and Y. Chen, Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale, Acc. Chem. Res., 2012, 45, 598–607.

    Google Scholar 

  5. N. Karousis, N. Tagmatarchis, and D. Tasis, Current Progress on the Chemical Modification of Carbon Nanotubes, Chem. Rev., 2010, 110, 5366–5397.

    Google Scholar 

  6. Z. Sun, D. K. James, and J. M. Tour, Graphene Chemistry: Synthesis and Manipulation, J. Phys. Chem. Lett., 2011, 2, 2425–2432. L. Rodríguez-Pérez M. A. Herranz N. Martín, The chemistry of pristine graphene, Chem. Commun., 2013, 49, 3721-3735.

    Google Scholar 

  7. J. Mateos-Gil, L. Rodríguez-Pérez, M. Moreno Oliva, G. Katsukis, C. Romero-Nieto, M. A. Herranz, D. M. Guldi, and N. Martín, Electroactive carbon nanoforms: a comparative study via sequential arylation and click chemistry reactions, Nanoscale., 2015, 7, 1193–1200.

    Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science., 2004, 306, 666–669.

    Google Scholar 

  9. R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries, Nano Lett., 2010, 10, 398–405.

    Google Scholar 

  10. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science., 2008, 319, 1229–1232.

    Google Scholar 

  11. W. Gu, W. Zhang, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, and D. Wu, Graphene sheets from worm-like exfoliated graphite, J. Mater. Chem., 2009, 19, 3367–3369.

    Google Scholar 

  12. S. Y. Choi, M. Mamak, E. Cordola, and U. Stadler, Large scale production of high aspect ratio graphite nanoplatelets with tunable oxygen functionality, J. Mater. Chem., 2011, 21, 5142–5147.

    Google Scholar 

  13. Z. Tang, J. Zhuang, and X. Wang, Exfoliation of Graphene from Graphite and Their Self-Assembly at the Oil–Water Interface, Langmuir., 2010, 26, 9045–9049.

    Google Scholar 

  14. W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, and X. Liang, Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality, Nano Res., 2009, 2, 706–712.

    Google Scholar 

  15. S. P. Economopoulos, G. Rotas, Y. Miyata, H. Shinohara, and N. Tagmatarchis, Exfoliation and Chemical Modification Using Microwave Irradiation Affording Highly Functionalized Graphene, ACS Nano., 2010, 4, 7499–7507.

    Google Scholar 

  16. I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. Costa, V. Speisser, C. Boeglin, M. Houllé, D. Bégin, D. Plee, M.-J. Ledoux, and C. Pham-Huu, Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia, Nano Res., 2010, 3, 126–137.

    Google Scholar 

  17. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 2008, 18, 1518–1525.

    Google Scholar 

  18. J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids, ACS Nano., 2009, 3, 2367–2375.

    Google Scholar 

  19. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ACS Nano., 2011, 5, 2332–2339.

    Google Scholar 

  20. J. N. Coleman, Liquid-Phase Exfoliation of Nanotubes and Graphene, Adv. Funct. Mater., 2009, 19, 3680–3695.

    Google Scholar 

  21. C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, and A. R. Barron, High-Yield Organic Dispersions of Unfunctionalized Graphene, Nano Lett., 2009, 9, 3460–3462.

    Google Scholar 

  22. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, J. Am. Chem. Soc., 2009, 131, 3611–3620.

    Google Scholar 

  23. M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, High-Concentration, Surfactant-Stabilized Graphene Dispersions, ACS Nano., 2010, 4, 3155–3162.

    Google Scholar 

  24. T. Skaltsas, N. Karousis, H.-J. Yan, C.-R. Wang, S. Pispas, and N. Tagmatarchis, Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic block copolymers, J. Mater. Chem., 2012, 22, 21507–21512.

    Google Scholar 

  25. E. B. Secor, P. L. Prabhumirashi, K. Puntambekar, M. L. Geier, and M. C. Hersam, Inkjet Printing of High Conductivity, Flexible Graphene Patterns, J. Phys. Chem. Lett., 2013, 4, 1347–1351.

    Google Scholar 

  26. M. S. Kang, K. T. Kim, J. U. Lee, and W. H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films, J. Mater. Chem. C., 2013, 1, 1870–1875.

    Google Scholar 

  27. A. Ciesielski, S. Haar, M. El Gemayel, H. Yang, J. Clough, G. Melinte, M. Gobbi, E. Orgiu, M. V. Nardi, G. Ligorio, V. Palermo, N. Koch, O. Ersen, C. Casiraghi, and P. Samorì, Harnessing the Liquid-Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach, Angew. Chem., Int. Ed., 2014, 53, 10355–10361.

    Google Scholar 

  28. S. Haar, A. Ciesielski, J. Clough, H. Yang, R. Mazzaro, F. Richard, S. Conti, N. Merstorf, M. Cecchini, V. Morandi, C. Casiraghi, and P. Samorì, A Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids, Small., 2014, 11, 1691–1702.

    Google Scholar 

  29. J. Malig, C. Romero-Nieto, N. Jux, and D. M. Guldi, Integrating Water-Soluble Graphene into Porphyrin Nanohybrids, Adv. Mater., 2012, 24, 800–805.

    Google Scholar 

  30. J. Malig, N. Jux, D. Kiessling, J.-J. Cid, P. Vázquez, T. Torres, and D. M. Guldi, Towards Tunable Graphene/Phthalocyanine–PPV Hybrid Systems, Angew. Chem., Int. Ed., 2011, 50, 3561–3565.

    Google Scholar 

  31. J. Geng, B.-S. Kong, S. B. Yang, and H.-T. Jung, Preparation of graphene relying on porphyrin exfoliation of graphite, Chem. Commun., 2010, 46, 5091–5093.

    Google Scholar 

  32. A. Ghosh, K. V. Rao, S. J. George, and C. N. R. Rao, Noncovalent Functionalization, Exfoliation, and Solubilization of Graphene in Water by Employing a Fluorescent Coronene Carboxylate, Chem.–Eur. J., 2010, 16, 2700–2704. S. Sampath A. N. Basuray K. J. Hartlieb T. Aytun S. I. Stupp J. F. Stoddart, Direct Exfoliation of Graphite to Graphene in Aqueous Media with Diazaperopyrenium Dications, Adv. Mater., 2013, 25, 2740-2745.

    Google Scholar 

  33. X. An, T. W. Butler, M. Washington, S. K. Nayak, and S. Kar, Optical and Sensing Properties of 1-Pyrenecarboxylic Acid-Functionalized Graphene Films Laminated on Polydimethylsiloxane Membranes, ACS Nano, 2011, 5, 1003–1011. D.-W. Lee T. Kim M. Lee, An amphiphilic pyrene sheet for selective functionalization of graphene, Chem. Commun., 2011, 47, 8259-8261.

    Google Scholar 

  34. J. A. Mann, J. Rodríguez-López, H. D. Abruña, and W. R. Dichtel, Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene, J. Am. Chem. Soc., 2011, 133, 17614–17617.

    Google Scholar 

  35. X. An, T. Simmons, R. Shah, C. Wolfe, K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra, and S. Kar, Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications, Nano Lett., 2010, 10, 4295–4301.

    Google Scholar 

  36. J. M. Englert, J. Röhrl, C. D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke, and A. Hirsch, Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile, Adv. Mater., 2009, 21, 4265–4269.

    Google Scholar 

  37. N. V. Kozhemyakina, J. M. Englert, G. Yang, E. Spiecker, C. D. Schmidt, F. Hauke, and A. Hirsch, Non-Covalent Chemistry of Graphene: Electronic Communication with Dendronized Perylene Bisimides, Adv. Mater., 2010, 22, 5483–5487.

    Google Scholar 

  38. C. Backes, F. Hauke, and A. Hirsch, The Potential of Perylene Bisimide Derivatives for the Solubilization of Carbon Nanotubes and Graphene, Adv. Mater., 2011, 23, 2588–2601.

    Google Scholar 

  39. F. Wurthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun., 2004, 1564–1579.

    Google Scholar 

  40. H. Langhals, Control of the Interactions in Multichromophores: Novel Concepts. Perylene Bis-imides as Components for Larger Functional Units, Helv. Chim. Acta., 2005, 88, 1309–1343.

    Google Scholar 

  41. C. Huang, S. Barlow, and S. R. Marder, Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics, J. Org. Chem., 2011, 76, 2386–2407.

    Google Scholar 

  42. Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, and K. Müllen, Composites of Graphene with Large Aromatic Molecules, Adv. Mater., 2009, 21, 3191–3195.

    Google Scholar 

  43. S. Wang, B. M. Goh, K. K. Manga, Q. Bao, P. Yang, and K. P. Loh, Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene–Organic Hybrid Wire with Photovoltaic Properties, ACS Nano., 2010, 4, 6180–6186.

    Google Scholar 

  44. Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, and L. Niu, Decorated graphene sheets for label-free DNA impedance biosensing, Biomaterials., 2012, 33, 1097–1106.

    Google Scholar 

  45. H. Yang, A. J. Mayne, G. Comtet, G. Dujardin, Y. Kuk, P. Sonnet, L. Stauffer, S. Nagarajan, and A. Gourdon, STM imaging, spectroscopy and manipulation of a self-assembled PTCDI monolayer on epitaxial graphene, Phys. Chem. Chem. Phys., 2013, 15, 4939–4946.

    Google Scholar 

  46. F. Würthner, Bay-substituted perylene bisimides: Twisted fluorophores for supramolecular chemistry, Pure Appl. Chem., 2006, 78, 2341–2349.

    Google Scholar 

  47. S. Rosenne, E. Grinvald, E. Shirman, L. Neeman, S. Dutta, O. Bar-Elli, R. Ben-Zvi, E. Oksenberg, P. Milko, V. Kalchenko, H. Weissman, D. Oron, and B. Rybtchinski, Self-Assembled Organic Nanocrystals with Strong Nonlinear Optical Response, Nano Lett., 2015, 15, 7232–7237.

    Google Scholar 

  48. X. Zhang, C. Zhan, X. Zhang, and J. Yao, Orientation of bromination in bay-region of perylene diimides, Tetrahedron., 2013, 69, 8155–8160.

    Google Scholar 

  49. M. Guide, S. Pla, A. Sharenko, P. Zalar, F. Fernández-Lázaro, Á. Sastre-Santos, and T.-Q. Nguyen, A structure–property–performance investigation of perylenediimides as electron accepting materials in organic solar cells, Phys. Chem. Chem. Phys., 2013, 15, 18894–18899.

    Google Scholar 

  50. S. Prakash, and J. D. Pandey, Tetrahedron, 1965, 21, 903–908.

    Google Scholar 

  51. C. Petrier, Y. Jiang, and M. F. Lamy, Environ. Sci. Technol., 1998, 32, 1316–1318.

    Google Scholar 

  52. A. Stergiou, H. B. Gobeze, I. D. Petsalakis, S. Zhao, H. Shinohara, F. D’Souza, and N. Tagmatarchis, Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation, Nanoscale., 2015, 7, 15840–15851.

    Google Scholar 

  53. M. E. Ragoussi, G. Katsukis, A. Roth, J. Malig, G. de la Torre, D. M. Guldi, and T. Torres, Electron-Donating Behavior of Few-Layer Graphene in Covalent Ensembles with Electron-Accepting Phthalocyanines, J. Am. Chem. Soc., 2014, 136, 4593–4598.

    Google Scholar 

  54. N. Karousis, J. Ortiz, K. Ohkudo, T. Hasobe, S. Fukuzumi, Á. Sastre-Santos, and N. Tagmatarchis, Zinc Phthalocyanine–Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics, and Photoelectrochemical Cell Preparation, J. Phys. Chem. C., 2012, 116, 20564–20573.

    Google Scholar 

  55. C. Bikram, S. K. Das, K. Ohkubo, S. Fukuzumi, and F. D’Souza, Ultrafast charge separation in supramolecular tetrapyrrole–graphene hybrids, Chem. Commun., 2012, 48, 11859–11861.

    Google Scholar 

  56. R. G. Parr, and W. Yang, Density-Functional Theory of the Electronic Structure of Molecules, Annu. Rev. Phys. Chem., 1995, 46, 701–728.

    Google Scholar 

  57. M. A. L. Marques, and E. K. U. Gross, Time-Dependent Density Functional Theory, Annu. Rev. Phys. Chem., 2004, 55, 427–455.

    Google Scholar 

  58. Y. Zhao, and D. Truhlar, Density Functionals with Broad Applicability in Chemistry, Acc. Chem. Res., 2008, 41, 157–167.

    Google Scholar 

  59. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  60. I. D. Petsalakis, and G. Theodorakopoulos, Theoretical study on a corrole-azafullerene dyad: Electronic structure, spectra and photoinduced electron transfer, Chem. Phys. Lett., 2014, 610, 50–55.

    Google Scholar 

  61. L. Martín-Gomis, G. Rotas, K. Ohkubo, F. Fernández-Lázaro, S. Fukuzumi, N. Tagmatarchis, Á. Sastre-Santos, Does a Nitrogen Matter?: Synthesis and photoinduced electron transfer of perylenediimide donors covalently linked to C59N and C60 acceptors, Nanoscale., 2015, 7, 7437–7444.

    Google Scholar 

Download references

Acknowledgments

Financial support for this research by the Spanish Ministry of Economy and Competitiveness (Mineco) of Spain (CTQ2014- 55798-R and CTQ2015-71936-REDT), Generalitat Valenciana (Prometeo 2012/010) and by GSRT/NSRF 2007-2013 through action “ARISTEIA II” project FUNGRAPH (3150) “Functionalization of graphene with multichromophoric arrays of photoactive units for energy conversion” is acknowledged. We are indebted to Prof. Nori Shinohara and his group at Nagoya University for kindly acquiring TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shunichi Fukuzumi, Nikos Tagmatarchis or Ángela Sastre-Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Gomis, L., Karousis, N., Fernández-Lázaro, F. et al. Exfoliation and supramolecular functionalization of graphene with an electron donor perylenediimide derivative. Photochem Photobiol Sci 16, 596–605 (2017). https://doi.org/10.1039/c6pp00351f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00351f

Navigation