Skip to main content

Advertisement

Log in

Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones — what makes a good extraction pathway?

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called “open center ratio” which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science, 2011, 332, 805–809.

    Article  CAS  PubMed  Google Scholar 

  2. T. Roach, A. Krieger-Liszkay, Curr. Protein Pept. Sci., 2014, 15, 351–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Rasmussen, S. D. Minteer, Electrochim. Acta, 2014, 126, 68–73.

    Article  CAS  Google Scholar 

  4. M. Rasmussen, S. D. Minteer, Phys. Chem. Chem. Phys., 2014, 16, 17327–17331.

    Article  CAS  PubMed  Google Scholar 

  5. H. Hamidi, K. Hasan, S. C. Emek, Y. Dilgin, H.-E. Akerlund, P.-A. Albertsson, D. Leech, L. Gorton, ChemSuschem, 2015, 8, 990–993.

    Article  CAS  PubMed  Google Scholar 

  6. K. Hasan, Y. Dilgin, S. C. Emek, M. Tavahodi, H.-E. Akerlund, P.-A. Albertsson, L. Gorton, ChemElectroChem, 2014, 1, 131–139.

    Article  CAS  Google Scholar 

  7. J. O. Calkins, Y. Umasankar, H. O’Neill, R. P. Ramasamy, Energy Environ. Sci., 2013, 6, 1891–1900.

    Article  CAS  Google Scholar 

  8. A. Badura, T. Kothe, W. Schuhmann, M. Roegner, Energy Environ. Sci., 2011, 4, 3263–3274.

    Article  CAS  Google Scholar 

  9. R. Tel-Vered, I. Willner, ChemElectroChem, 2014, 1, 1778–1797.

    Article  CAS  Google Scholar 

  10. T. Kothe, S. Poeller, F. Zhao, P. Fortgang, M. Roegner, W. Schuhmann, N. Plumere, Chem. - Eur. J., 2014, 20, 11029–11034.

    Article  CAS  PubMed  Google Scholar 

  11. F. Zhao, K. Sliozberg, M. Roegner, N. Plumere, W. Schuhmann, J. Electrochem. Soc., 2014, 161, H3035–H3041.

    Article  CAS  Google Scholar 

  12. K. Hasan, H. B. Yildiz, E. Sperling, P. O. Conghaile, M. A. Packer, D. Leech, C. Hagerhall, L. Gorton, Phys. Chem. Chem. Phys., 2014, 16, 24676–24680.

    Article  CAS  PubMed  Google Scholar 

  13. P. Bombelli, R. W. Bradley, A. M. Scott, A. J. Philips, A. J. McCormick, S. M. Cruz, A. Anderson, K. Yunus, D. S. Bendall, P. J. Cameron, J. M. Davies, A. G. Smith, C. J. Howe, A. C. Fisher, Energy Environ. Sci., 2011, 4, 4690–4698.

    Article  CAS  Google Scholar 

  14. P. Bombelli, T. Mueller, T. W. Herling, C. J. Howe, T. P. J. Knowles, Adv. Energy Mater., 2015, 5, 1401299.

    Article  CAS  Google Scholar 

  15. R. W. Bradley, P. Bombelli, D. J. Lea-Smith, C. J. Howe, Phys. Chem. Chem. Phys., 2013, 15, 13611–13618.

    Article  CAS  PubMed  Google Scholar 

  16. J. M. Pisciotta, Y. Zou, I. V. Baskakov, PLoS One, 2010, 5, e10821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. A. J. McCormick, P. Bombelli, A. M. Scott, A. J. Philips, A. G. Smith, A. C. Fisher, C. J. Howe, Energy Environ. Sci., 2011, 4, 4699–4709.

    Article  CAS  Google Scholar 

  18. J. P. Giraldo, M. P. Landry, S. M. Faltermeier, T. P. McNicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, M. S. Strano, Nat. Mater., 2014, 13, 400–408.

    Article  CAS  PubMed  Google Scholar 

  19. E. Stavrinidou, R. Gabrielsson, E. Gomez, X. Crispin, O. Nilsson, D. T. Simon, M. Berggren, Sci. Adv., 2015, 1, e1501136–e1501136.

    Article  PubMed  PubMed Central  Google Scholar 

  20. M. Kasuno, M. Torimura, Y. Tsukatani, D. Murakami, S. Hanada, T. Matsushita, H. Tao, J. Electroanal. Chem., 2009, 636, 101–106.

    Article  CAS  Google Scholar 

  21. Z. Chen, Y. Lyu, K. Wang, X. Dong, M. Deng, C. Bai, Y. Xu, W. Zhang, Z. Liu, Int. J. Hydrogen Energy, 2013, 38, 13045–13049.

    Article  CAS  Google Scholar 

  22. K. Hasan, K. V. R. Reddy, V. Essmann, K. Gorecki, P. O. Conghaile, W. Schuhmann, D. Leech, C. Hagerhall, L. Gorton, Electroanalysis, 2015, 27, 118–127.

    Article  CAS  Google Scholar 

  23. K. Hasan, E. Cevik, E. Sperling, M. A. Packer, D. Leech, L. Gorton, Adv. Energy Mater., 2015, 5, 1501100.

    Article  CAS  Google Scholar 

  24. G. Longatte, H.-Y. Fu, O. Buriez, E. Labbe, F.-A. Wollman, C. Amatore, F. Rappaport, M. Guille-Collignon, F. Lemaitre, Biophys. Chem., 2015, 205, 1–8.

    Article  CAS  PubMed  Google Scholar 

  25. K. Maxwell, G. N. Johnson, J. Exp. Bot., 2000, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  26. B. Genty, J. M. Briantais, N. R. Baker, Biochim. Biophys. Acta, 1989, 990, 87–92.

    Article  CAS  Google Scholar 

  27. K. A. Ahrling, S. Peterson, Biochemistry, 2003, 42, 7655–7662.

    Article  CAS  PubMed  Google Scholar 

  28. B. A. Diner, V. Petrouleas, Biochim. Biophys. Acta, 1987, 893, 138–148.

    Article  CAS  Google Scholar 

  29. H. M. Gleiter, E. Haag, Y. Inoue, G. Renger, Photosynth. Res., 1993, 35, 41–53.

    Article  CAS  PubMed  Google Scholar 

  30. E. Haag, H. M. Gleiter, G. Renger, Photosynth. Res., 1992, 31, 113–126.

    Article  CAS  PubMed  Google Scholar 

  31. D. Joly, R. Carpentier, J. Photochem. Photobiol., B, 2007, 88, 43–50.

    Article  CAS  Google Scholar 

  32. D. Shevela, J. Messinger, Biochim. Biophys. Acta, Bioenerg., 2012, 1817, 1208–1212.

    Article  CAS  Google Scholar 

  33. J. L. Zimmermann, A. W. Rutherford, Biochim. Biophys. Acta, 1986, 851, 416–423.

    Article  CAS  Google Scholar 

  34. S. Dudekula, M. Fragata, J. Photochem. Photobiol., B., 2006, 85, 177–183.

    Article  CAS  Google Scholar 

  35. V. Petrouleas, B. A. Diner, Biochim. Biophys. Acta, 1987, 893, 126–137.

    Article  CAS  Google Scholar 

  36. K. Satoh, M. Ohhashi, Y. Kashino, H. Koike, Plant Cell Physiol., 1995, 36, 597–605.

    Article  CAS  Google Scholar 

  37. Govindjee, J. J. Eatonrye, Photosynth. Res., 1986, 10, 365–379.

    Article  CAS  PubMed  Google Scholar 

  38. B. Rimbault, D. Esposito, D. Drapier, Y. Choquet, D. Stern, F. A. Wollman, Mol. Gen. Genet., 2000, 264, 486–491.

    Article  CAS  PubMed  Google Scholar 

  39. U. Schreiber, T. Endo, H. L. Mi, K. Asada, Plant Cell Physiol., 1995, 36, 873–882.

    Article  CAS  Google Scholar 

  40. L. Houille-Vernes, F. Rappaport, F.-A. Wollman, J. Alric, X. Johnson, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 20820–20825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. X. Johnson, G. Vandystadt, S. Bujaldon, F.-A. Wollman, R. Dubois, P. Roussel, J. Alric, D. Beal, Photosynth. Res., 2009, 102, 85–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lemaître.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00076b.

F. Rappaport died before completion of this manuscript. His co-authors wish to dedicate this article to his memory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longatte, G., Rappaport, F., Wollman, FA. et al. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones — what makes a good extraction pathway?. Photochem Photobiol Sci 15, 969–979 (2016). https://doi.org/10.1039/c6pp00076b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00076b

Navigation