Issue 21, 2016

Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view

Abstract

Organic–inorganic methylammonium lead halide perovskites have recently attracted great interest emerging as promising photovoltaic materials with a high 20.8% efficiency, but lead pollution is still a problem that may hinder the development and wide spread of MAPbI3 perovskites. To reduce the use of lead, we investigated the structures, electronic and optical properties of mixed MAGexPb(1−x)I3 theoretically by using density functional theory methods at different calculation levels. Results show that the mixed Ge/Pb perovskites exhibit a monotonic decrease evolution in band energy to push the band gap deeper in the near-infrared region and have a red shift optical absorption with an increased proportion of Ge. The results also indicate that lattice distortion and spin–orbit coupling (SOC) strength play important roles in the band gap behavior of MAGexPb(1−x)I3 by affecting the bandwidths of CBM and VBM. The calculations for short circuit current density, open circuit voltage, and theoretical power conversion efficiency suggest that mixed Ge/Pb perovskite solar cells (PSCs) with efficiency over 22% are superior to MAPbI3 and MAGeI3. And notably, MAGe0.75Pb0.25I3 is a promising harmless material for solar cells absorber with the highest theoretical efficiency of 24.24%. These findings are expected to be helpful for further rational design of nontoxic light absorption layer for high-performance PSCs.

Graphical abstract: Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2016
Accepted
28 Apr 2016
First published
28 Apr 2016

Phys. Chem. Chem. Phys., 2016,18, 14408-14418

Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view

P. Sun, Q. Li, S. Feng and Z. Li, Phys. Chem. Chem. Phys., 2016, 18, 14408 DOI: 10.1039/C6CP02105K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements