Issue 3, 2015

Biocompatible long-circulating star carboxybetaine polymers

Abstract

Polyethylene glycol (PEG) is considered to be the most effective material to prolong the circulation time of nanoparticles by reducing non-specific protein adsorption in blood. However, it is recognized that PEG decomposes in most physiological solutions, and an anti-PEG antibody has been detected in some normal blood donors as a response to injection with PEGylated polymer particles. Zwitterionic polymers are potential alternatives to PEG for biomedical applications because of their super resistance to non-specific protein adsorption. Thus, finding one polymer with a long circulation time and resistance to the immune response is of significant importance. Here, we prepared four star carboxybetaine polymers of different molecular weights via atom transfer radical polymerization (ATRP) from a β-cyclodextrin (β-CD) initiator for investigating the biocompatibility of carboxybetaine polymer, a typical zwitterionic polymer. The circulation half-life of the largest star polymer (123 kDa) in mice was prolonged to 40 h in vivo, with no appreciable damage or inflammation observed in the major organ tissues. Furthermore, the circulation time of repeat injections showed similar results to the first injection, with no obvious increase in the amount of antibody in blood. The internalization of the star carboxybetaine polymers by macrophage cells was a relatively slow process. The high cell viability in the presence of star carboxybetaine polymers up to 2 mg mL−1 was maintained. The hemolytic activity of the star carboxybetaine polymers at 5 mg mL−1 was almost undetectable. In vitro results prove a key prediction of excellent biocompatibility in vivo. All the results suggest that the carboxybetaine polymer, perhaps even most of the zwitterionic ones, might be a good alternative to PEG in the development of a drug delivery system.

Graphical abstract: Biocompatible long-circulating star carboxybetaine polymers

Article information

Article type
Paper
Submitted
09 Sep 2014
Accepted
28 Oct 2014
First published
28 Oct 2014

J. Mater. Chem. B, 2015,3, 440-448

Author version available

Biocompatible long-circulating star carboxybetaine polymers

W. Lin, G. Ma, F. Ji, J. Zhang, L. Wang, H. Sun and S. Chen, J. Mater. Chem. B, 2015, 3, 440 DOI: 10.1039/C4TB01477D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements