Issue 35, 2014

Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer

Abstract

The aggregate-induced limitation for high power-conversion efficiencies (PCEs) of perylene-diimide (PDI):polymer solar cells can be circumvented when two simple rules are respected; the aggregate size of PDI remains short enough and the omnipresent PDI aggregates are electronically interconnected. Following these guidelines, a PCE of 3.7% is delivered by using the solution-processable, planar PDI monomer of N,N′-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide as the electron acceptor mixed with the low-energy gap polymeric donor poly[(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b;4,5-b′]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene))-2,6-diyl] (PBDTTT-CT). The PBDTTT-CT:PDI composite absorbs strongly the light in the region of 400 nm–800 nm and after adding a small amount of 1,8-diiodooctane (DIO) efficient photocurrent generation is achieved. Space-charge limited dark current and transient photovoltage measurements suggest that the use of the DIO component optimizes the electron/hole carrier mobility ratio, suppresses the non-geminate recombination losses and improves the charge extraction efficiency.

Graphical abstract: Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer

Supplementary files

Article information

Article type
Communication
Submitted
05 Jun 2014
Accepted
22 Jul 2014
First published
22 Jul 2014

J. Mater. Chem. A, 2014,2, 14348-14353

Author version available

Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer

R. Singh, E. Aluicio-Sarduy, Z. Kan, T. Ye, R. C. I. MacKenzie and P. E. Keivanidis, J. Mater. Chem. A, 2014, 2, 14348 DOI: 10.1039/C4TA02851A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements