Issue 20, 2014

Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity

Abstract

Zinc oxide, as an inexpensive anode material, has attracted less attention than other metal oxides due to its poor cycling stability. A rational design of ZnO nanostructures with well-controlled particle sizes and microstructures is essential in order to improve their stability and performance as electrodes for lithium ion batteries (LIBs). Here, we demonstrate a simple approach via atomic layer deposition (ALD) to synthesize ZnO quantum dots (QDs) on graphene layers, in which the size of the ZnO QDs can be controlled from 2 to 7 nm by ALD cycles. A strong relationship between size and electrochemical performance is observed, in which smaller sized QDs on graphene display enhanced electrochemical performance. A high reversible specific capacity of 960 mA h g−1 is achieved at a current density of 100 mA g−1 for 2 nm ZnO QDs, approaching to the theoretical value of ZnO as the LIB anode. The greatly enhanced cycling stability and rate performance of the ALD ZnO QD/graphene composite electrode can be attributed to the well-maintained structural integrity without pulverization upon electrochemical charge/discharge for ZnO QDs with the grain size below a critical value.

Graphical abstract: Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2014
Accepted
24 Feb 2014
First published
24 Feb 2014

J. Mater. Chem. A, 2014,2, 7319-7326

Author version available

Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity

X. Sun, C. Zhou, M. Xie, H. Sun, T. Hu, F. Lu, S. M. Scott, S. M. George and J. Lian, J. Mater. Chem. A, 2014, 2, 7319 DOI: 10.1039/C4TA00589A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements