Skip to main content
Log in

Static magnetic field (SMF) sensing of the P723/P689 photosynthetic complex

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Moderate intensity SMF have been shown to act as a controller of the protic potential in the coherent milieu of the thylakoid membranes. SMF of the order of 60-500 mT induces memory-like effect in photosystem I (PSI, P, 723) emission with a correlated oscillation of photosystem II (PSII, P, 689) fluorescence emission at a temperature of 77 K. The observed magnetic perturbation that affects the thylakoid photon capture circuitry was also found to be associated with the bio-energetic machinery of the thylakoid membranes. At normal pH, SMF causes an enhancement of PSI fluorescence emission intensity (P, 723/P, 689 > 1), followed by a slow relaxation on the removal of SMF. The enhancement of the PSI fluorescence intensity also occurs under no-field condition, if either the pH of the medium is lowered, or protonophores, such as carbonyl cyanide chlorophenylhydrazine or nigericin are added (P, 723/P, 689 ≥ 2). If SMF was applied under such a low pH condition or in the presence of protonophore, a reverse effect, particularly, a reduction of the enhanced PSI emission was observed. Because SMF is essentially equivalent to a spin perturbation, the observed effects can be explained in terms of spin re-organization, illustrating a memory effect via membrane re-alignment and assembly. The mimicry of conventional uncouplers by SMF is also notable; the essential difference being the reversibility and manoeuvrability of the latter (SMF). Finally, the effect implies numerous possibilities of externally regulating the photon capture and proton circulation in the thylakoid membranes using controlled SMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Belyavskaya, Biological effects due to weak magnetic field on plants, Adv. Space Res., 2004, 34, 1566–1574.

    Article  CAS  PubMed  Google Scholar 

  2. A. Hoff, Magnetic field effects on photosynthetic reactions, Q. Rev. Biophys., 1981, 14, 599.

    Article  CAS  PubMed  Google Scholar 

  3. H. Lee, Y.-C. Cheng and G. R. Fleming, Coherence dynamics in photosynthesis: protein protection of excitonic coherence, Science, 2007, 316, 1462–1465.

    Article  CAS  PubMed  Google Scholar 

  4. J. M. Olson, The FMO Protein, Photosynth. Res., 2004, 80, 181–187.

    Article  CAS  PubMed  Google Scholar 

  5. G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship and G. S. Engel, Long-lived quantum coherence in photosynthetic complexes at physiological temperature, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 12766–12770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. P. Small, N. Hüner and W. Wan, Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae, Bioelectromagnetics, 2012, 33, 298–308.

    Article  CAS  PubMed  Google Scholar 

  7. S. Pietruszewski, S. Muszynski and A. Dziwulska, Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses), Int. Agrophysics, 2007, 21, 95.

    Google Scholar 

  8. P. Galland and A. Pazur, Magnetoreception in plants, J. Plant Res., 2005, 118, 371–389.

    Article  PubMed  Google Scholar 

  9. T. Ritz, T. Yoshii, C. Foerster and M. Ahmad, Cryptochrome: A photoreceptor with the properties of a magnetoreceptor?, Commu.Integr. Biol., 2010, 3, 24–27.

    Article  Google Scholar 

  10. T. Yoshii, M. Ahmad, C. Helfrich-Förster, Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock, PLoS Biol., 2009, 7, e1000086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. J. R. Norris, TRIPLET STATES AND PHOTOSYNTHESIS, Photochem. Photobiol., 1976, 23, 449–450.

    Article  CAS  PubMed  Google Scholar 

  12. A. Ishizaki and G. R. Fleming, Quantum coherence in photosynthetic light harvesting, Annu. Rev. Condens. Matter Phys., 2012, 3, 333–361.

    Article  CAS  Google Scholar 

  13. I. Kassal, J. Yuen-Zhou, S. Rahimi-Keshari, Does coherence enhance transport in photosynthesis?, J. Phys. Chem. Lett., 2013, 4, 362–367.

    Article  CAS  PubMed  Google Scholar 

  14. M. Tikkanen, M. Nurmi, M. Suorsa, R. Danielsson, F. Mamedov, S. Styring, E.-M. Aro, Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants, Biochim. Biophys. Acta, Bioenerg., 2008, 1777, 425–432.

    Article  CAS  Google Scholar 

  15. J. P. Dekker and E. J. Boekema, Supramolecular organization of thylakoid membrane proteins in green plants, Biochim. Biophys. Acta, Bioenerg., 2005, 1706, 12–39.

    Article  CAS  Google Scholar 

  16. E. Shimoni, O. Rav-Hon, I. Ohad, V. Brumfeld and Z. Reich, Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography, Plant Cell Online, 2005, 17, 2580–2586.

    Article  CAS  Google Scholar 

  17. N. Nelson, A. Ben-Shem, The complex architecture of oxygenic photosynthesis, Nat. Rev. Mol. Cell Biol., 2004, 5, 971–982.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Evron, R. E. McCarty, Simultaneous measurement of ΔpH and electron transport in chloroplast thylakoids by 9-aminoacridine fluorescence, Plant Physiol., 2000, 124, 407–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Saphon and A. R. Crofts, The H+/e-ratio in chloroplasts is 2. Possible errors in its determination, Z. Naturforsch., C: Biosci., 1977, 32, 810–816.

    Article  CAS  Google Scholar 

  20. T. Owens, S. Webb, L. Mets, R. Alberte and G. Fleming, Antenna size dependence of fluorescence decay in the core antenna of photosystem I: estimates of charge separation and energy transfer rates, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 1532–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. U. Schreiber, W. Bilger and C. Neubauer, Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis, in Ecophysiology of photosynthesis, Springer, 1994, pp. 49-70.

    Google Scholar 

  22. D. M. Kramer, J. A. Cruz and A. Kanazawa, Balancing the central roles of the thylakoid proton gradient, Trends Plant Sci., 2003, 8, 27–32.

    Article  CAS  PubMed  Google Scholar 

  23. K. Takizawa, J. A. Cruz, A. Kanazawa and D. M. Kramer, The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 1233–1244.

    Article  CAS  Google Scholar 

  24. S. Theg, G. Chiang and R. Dilley, Protons in the thylakoid membrane-sequestered domains can directly pass through the coupling factor during ATP synthesis in flashing light, J. Biol. Chem., 1988, 263, 673–681.

    Article  CAS  PubMed  Google Scholar 

  25. H. Yamasaki, S. Furuya, A. Kawamura, A. Ito, S. Okayama and M. Nishimura, Induction of the H+ release from thylakoid membranes by illumination in the presence of protonophores at high concentrations, Plant Cell Physiol., 1991, 32, 925–934.

    Article  CAS  Google Scholar 

  26. M. Huber, Introduction to magnetic resonance methods in photosynthesis, Photosynth. Res., 2009, 102, 305–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. R. Timmel and K. B. Henbest, A study of spin chemistry in weak magnetic fields, Philos. Trans. R. Soc. London, A, 2004, 362, 2573–2589.

    Article  CAS  Google Scholar 

  28. N. Bukhov and R. Carpentier, Alternative photosystem I-driven electron transport routes: mechanisms and functions, Photosynth. Res., 2004, 82, 17–33.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Munekage and T. Shikanai, Cyclic electron transport through photosystem I, Plant Biotechnol., 2005, 22, 361–369.

    Article  CAS  Google Scholar 

  30. H. Takahashi, S. Clowez, F.-A. Wollman, O. Vallon and F. Rappaport, Cyclic electron flow is redox-controlled but independent of state transition, Nat. Commun., 2013, 4.

    Google Scholar 

  31. S. Santabarbara, I. Kuprov, W. V. Fairclough, S. Purton, P. J. Hore, P. Heathcote and M. C. Evans, Bidirectional electron transfer in photosystem I: determination of two distances between P700+ and A1-in spin-correlated radical pairs, Biochemistry, 2005, 44, 2119–2128.

    Article  CAS  PubMed  Google Scholar 

  32. Y.-S. Jung, I. R. Vassiliev and J. H. Golbeck, Crossover of a high-spin (S = 7/2, 3/2) to a low-spin (S = 1/2) iron-selenium cluster in FA and FB of photosystem I on rebinding of PsaC onto P700-FX cores, JBIC, J. Biol. Inorg. Chem., 1997, 2, 209–217.

    Article  CAS  Google Scholar 

  33. K. A. Campbell, W. Gregor, D. P. Pham, J. M. Peloquin, R. J. Debus and R. D. Britt, The 23 and 17 kDa extrinsic proteins of photosystem II modulate the magnetic properties of the S1-state manganese cluster, Biochemistry, 1998, 37, 5039–5045.

    Article  CAS  PubMed  Google Scholar 

  34. R. Inglis, C. C. Stoumpos, A. Prescimone, M. Siczek, T. Lis, W. Wernsdorfer, E. K. Brechin and C. J. Milios, Ferromagnetic manganese “cubes”: from PSII to single-molecule magnets, Dalton Trans., 2010, 39, 4777–4785.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Kurashige, G. K.-L. Chan and T. Yanai, Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II, Nat. Chem., 2013, 5, 660–666.

    Article  CAS  PubMed  Google Scholar 

  36. U. Heinen, O. Poluektov, E. Stavitski, T. Berthold, E. Ohmes, S. L. Schlesselman, J. R. Golecki, G. J. Moro, H. Levanon and M. C. Thurnauer, Magnetic-field-induced orientation of photosynthetic reaction centers, as revealed by time-resolved D-band electron paramagnetic resonance of spin-correlated radical pairs. II. Field dependence of the alignment, J. Phys. Chem. B, 2004, 108, 9498–9504.

    Article  CAS  Google Scholar 

  37. Z. Zeng, D. Guenzburger and D. Ellis, Electronic structure, spin couplings, and hyperfine properties of nanoscale molecular magnets, Phys. Rev. B: Condens. Matter, 1999, 59, 6927.

    Article  CAS  Google Scholar 

  38. B. Brocklehurst, Magnetic fields and radical reactions: recent developments and their role in nature, Chem. Soc. Rev., 2002, 31, 301–311.

    Article  CAS  PubMed  Google Scholar 

  39. G. Scott, Review of gyromagnetic ratio experiments, Rev. Mod. Phys., 1962, 34, 102.

    Article  Google Scholar 

  40. D. J. Müller, Y. F. Dufrêne, Atomic force microscopy: a nanoscopic window on the cell surface, Trends Cell Biol., 2011, 21, 461–469.

    Article  PubMed  CAS  Google Scholar 

  41. D. J. Muller, AFM: A Nanotool in Membrane Biology†, Biochemistry, 2008, 47, 7986–7998.

    Article  CAS  PubMed  Google Scholar 

  42. R. García and R. Perez, Dynamic atomic force microscopy methods, Surf. Sci. Rep., 2002, 47, 197–301.

    Article  Google Scholar 

  43. H. Kirchhoff, Molecular crowding and order in photosynthetic membranes, Trends Plant Sci., 2008, 13, 201–207.

    Article  CAS  PubMed  Google Scholar 

  44. M. Herbstová, S. Tietz, C. Kinzel, M. V. Turkina and H. Kirchhoff, Architectural switch in plant photosynthetic membranes induced by light stress, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 20130–20135.

    Article  PubMed  PubMed Central  Google Scholar 

  45. D. Kaftan, V. Brumfeld, R. Nevo, A. Scherz and Z. Reich, From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes, EMBO J., 2002, 21, 6146–6153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. G. Chuartzman, R. Nevo, E. Shimoni, D. Charuvi, V. Kiss, I. Ohad, V. Brumfeld and Z. Reich, Thylakoid membrane remodeling during state transitions in Arabidopsis, Plant Cell Online, 2008, 20, 1029–1039.

    Article  CAS  Google Scholar 

  47. A. Hazra, M. DasGupta, Phosphorylation-dephosphorylation of light-harvesting complex II as a response to variation in irradiance is thiol sensitive and thylakoid sufficient: modulation of the sensitivity of the phenomenon by a peripheral component, Biochemistry, 2003, 42, 14868–14876.

    Article  CAS  PubMed  Google Scholar 

  48. J. Bennett, K. E. Steinback and C. J. Arntzen, Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 5253–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. Hipkins and N. R. Baker, Photosynthesis: energy transduction: a practical approach, IRL Press Limited, 1986.

    Google Scholar 

  50. C. Sigalat, Y. de Kouchkovsky and F. Haraux, Flow-force relationships in lettuce thylakoids. 2. Effect of the uncoupler FCCP on local proton resistances at the ATPase level, Biochemistry, 1993, 32, 10201–10208.

    Article  CAS  PubMed  Google Scholar 

  51. J. N. Sturgis, J. D. Tucker, J. D. Olsen, C. N. Hunter and R. A. Niederman, Atomic Force Microscopy Studies of Native Photosynthetic Membranes†, Biochemistry, 2009, 48, 3679–3698.

    Article  CAS  PubMed  Google Scholar 

  52. P. Manna and W. Vermaas, Lumenal proteins involved in respiratory electron transport in the cyanobacterium Synechocystis sp. PCC6803, Plant Mol. Biol., 1997, 35, 407–416.

    Article  CAS  PubMed  Google Scholar 

  53. G. Forti and A. M. Ehrenheim, The role of ascorbic acid in photosynthetic electron transport, Biochim. Biophys. Acta, Bioenerg., 1993, 1183, 408–412.

    Article  CAS  Google Scholar 

  54. G. Cornic, N. G. Bukhov, C. Wiese, R. Bligny and U. Heber, Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of photosystem I-dependent proton pumping, Planta, 2000, 210, 468–477.

    Article  CAS  PubMed  Google Scholar 

  55. L. Mustárdy, Development of thylakoid membrane stacking, in Oxygenic photosynthesis: the light reactions, Springer, 1996, pp. 59-68.

    Google Scholar 

  56. P. Mitchell, Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge, Springer, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Kr. Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Chakraborty, M., Raja, S.O. et al. Static magnetic field (SMF) sensing of the P723/P689 photosynthetic complex. Photochem Photobiol Sci 13, 1719–1729 (2014). https://doi.org/10.1039/c4pp00295d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00295d

Navigation