Skip to main content
Log in

From ultraviolet to Prussian blue: a spectral response for the cyanotype process and a safe educational activity to explain UV exposure for all ages

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Engaging students and the public in understanding UV radiation and its effects is achievable using the real time experiment that incorporates blueprint paper, an “educational toy” that is a safe and easy demonstration of the cyanotype chemical process. The cyanotype process works through the presence of UV radiation. The blueprint paper was investigated to be used as not only engagement in discussion for public outreach about UV radiation, but also as a practical way to introduce the exploration of measurement of UV radiation exposure and as a consequence, digital image analysis. Tests of print methods and experiments, dose response, spectral response and dark response were investigated. Two methods of image analysis for dose response calculation are provided using easy to access software and two methods of pixel count analysis were used to determine spectral response characteristics. Variation in manufacture of the blueprint paper product indicates some variance between measurements. Most importantly, as a result of this investigation, a preliminary spectral response range for the radiation required to produce the cyanotype reaction is presented here, which has until now been unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Smith, C. Ferguson, J. McKenzie, A. Bauman and P. Vita, Impacts from repeated mass media campaigns to promote sun protection in Australia, Health Promot. Int., 2002, 17 1, 51–60.

    Article  Google Scholar 

  2. W. McCarthy, The Australian Experience in Sun Protection and Screening for Melanoma, J. Surg. Oncol., 2004, 86, 236–245.

    Article  Google Scholar 

  3. B. K. Armstrong and A. Kricker, The epidemiology of UV induced skin cancer, J. Photochem. Photobiol., B, 2001, 63, 8–18.

    Article  CAS  Google Scholar 

  4. D. E. Godar, UV Doses Worldwide, Photochem. Photobiol., 2005, 81, 736–749.

    Article  CAS  Google Scholar 

  5. F. de Gruijl, Skin cancer and solar UV radiation, Eur. J. Cancer, 1999, 35 14, 2003–2009.

    Article  Google Scholar 

  6. L. Lemus-Deschamps and J. K. Makin, Fifty years of changes in UV Index and implications for skin cancer in Australia, Int. J. Biometeorol., 2012, 56, 727–735.

    Article  Google Scholar 

  7. R. Mckenzie, P. Aucamp, A. Bais, L. Bjorn, M. Ilyas and S. Madronich, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  Google Scholar 

  8. R. M. Lucas, A. J. McMichael, B. K. Armstrong and W. T. Smith, Estimating the global disease burden due to ultraviolet radiation exposure, Int. J. Epidemiol., 2008, 37, 654–667.

    Article  Google Scholar 

  9. D. English, B. K. Armstrong, A. Kricker and C. Fleming, Sunlight and Cancer, Cancer Causes Control, 1997, 8, 271–283.

    Article  CAS  Google Scholar 

  10. O. B. Carter and R. J. Donovan, Public (Mis)understanding of the UV Index, J. Health Commun., 2007, 12, 41–52.

    Article  Google Scholar 

  11. F. M. Stengel and J. F. Fernandez, Education and behavioral change for sun protection, J. Cosmet. Dermatol., 2005, 4, 83–88.

    Article  Google Scholar 

  12. W. R. Stanton, M. Janda, P. D. Baade and P. Anderson, Primary prevention of skin cancer: a review of sun protection in Australia and internationally, Health Promot. Int., 2004, 19 3, 369–378.

    Article  Google Scholar 

  13. M. Saraiya, K. Glanz, P. A. Briss, P. Nichols, C. White, D. Das, S. J. Smith, B. Tannor, A. B. Hutchinson, K. M. Wilson, N. Gandhi, N. C. Lee, B. Rimer, R. C. Coates, J. F. Kerner, R. A. Hiatt, P. Buffler and P. Rochester, Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review, Am. J. Prev. Med., 2004, 27 5, 422–466.

    Google Scholar 

  14. D. Hill, V. White, R. Marks, T. Theobald, R. Borland and C. Roy, Melanoma prevention: behavioral and nonhehavioral factors in sunburn among Australian urban population, Prev. Med., 1992, 21 5, 654–669.

    Article  CAS  Google Scholar 

  15. A. Milon, P.-E. Sottas, J.-L. Bulliard and D. Vernez, Effective exposure to solar UV in building workers: influence of local and individual factors, J. Exposure Sci. Environ. Epidemiol., 2007, 17, 58–68.

    Article  Google Scholar 

  16. H. Honigsmann, Erythema and pigmentation, Photodermatol., Photoimmunol. Photomed., 2002, 18, 75–81.

    Article  Google Scholar 

  17. D. Sliney, Epidemiological studies of sunlight and cataract: the critical factor of ultraviolet exposure geometry, Ophthalmic Epidemiol., 1994, 1 2, 107–119.

    Article  CAS  Google Scholar 

  18. J. F. W. Hershel, On the action of rays of the solar spectrum on vegetable colours, and on some new photographic processes, Philos. Trans. R. Soc. London, 1842, 132, 181–214.

    Article  Google Scholar 

  19. M. Ware, Cyanotype: The history, science and art of photographic printing in Prussian blue, National Museum of Photography, Film & Television, Bradford, England, 1999.

    Google Scholar 

  20. D. Davidson, The Formulation of Prussian Blue, J. Chem. Educ., 1937, 14 6, 277–281.

    Article  CAS  Google Scholar 

  21. M. Ware, The molecular basis of blueprinting, in Cyanotype: The history, science and art of photographic printing in Prussian blue, National Museum of Photography, Film & Television, Bradford, England, 1999, pp. 39-47.

    Google Scholar 

  22. G. D. Lawrence and S. Fishelson, UV Catalysis, Cyanotype Photography and Sunscreens, J. Chem. Educ., 1999, 76 9, 1199–1200.

    Article  CAS  Google Scholar 

  23. N. Downs, K. Larsen, A. Parisi, P. Schouten and C. Brennan, A practical science investigation for middle school students: Designing a simple cost effective chemical solar radiation dosimeter, Teach. Sci., 2012, 58 1, 48–51.

    Google Scholar 

  24. G. D. Lawrence and S. Fishelson, Blueprint Photography by the Cyanotype Process, J. Chem. Educ., 1999, 76 9, 1216A–1216B.

    Article  Google Scholar 

  25. S. F. Price, M. L. Schuette and E. Tassie, Measuring incident light graph clusters using photosensitive paper and image analysis, J. Am. Soc. Hortic. Sci., 1995, 120 2, 235–240.

    Article  Google Scholar 

  26. D. Friend, A simple method of measuring integrated light values in the field, Ecology, 1961, 42 3, 577–580.

    Article  Google Scholar 

  27. CIE, A reference action spectrum for ultraviolet induced erythema in human skin, CIE, 1987, 6, 17–22.

    Google Scholar 

  28. R. Mckenzie and S. Madronich, Ultraviolet, Surface, in Encyclopedia of Atmospheric Sciences, ed. R. H. James, Academic Press, Oxford, 2003, pp. 2474-2480.

    Google Scholar 

  29. B. Diffey, Source and measurement of ultraviolet radiation, Methods, 2002, 28 1, 4–13.

    Article  CAS  Google Scholar 

  30. K. Stamnes, Ultraviolet radiation, in Encyclopedia of Atmospheric Sciences, ed. R. H. James, Academic Press, Oxford, 2003, pp. 2467-2473.

    Google Scholar 

  31. N. Downs, A. Parisi, J. Turner and D. Turnbull, Modelling ultraviolet exposures in a school environment, Photochem. Photobiol. Sci., 2008, 7 6, 700–710.

    Article  CAS  Google Scholar 

  32. J. Turner and A. V. Parisi, Simple experiments to visualise and simulate the biological impact of ultraviolet radiation, in 2014 NIWA UV Workshop, ed. R. Mckenzie, Auckland, New Zealand, 2014. https://www.niwa.co.nz/atmosphere/uv-ozone/uv-science-workshops/2014-uv-workshop/atmosphere/uv-ozone/uv-science-workshops/2014-uv-workshop.

    Google Scholar 

  33. N. Downs, J. Turner, A. Parisi and J. Spence, Pen ink as an ultraviolet dosimeter, Teach. Sci., 2008, 54 4, 41–44.

    Google Scholar 

  34. H. D. Young, R. A. Freedman and L. Ford, Sears and Zemansky’s University Physics with Modern Physics, Pearson Addison-Wesley, San Francisco, USA, 2008.

    Google Scholar 

  35. N. Downs, A. Parisi, S. Powell, J. Turner and C. Brennan, Extensions in pen ink dosimetry: Ultraviolet calibration applications for primary and secondary schools, Teach. Sci., 2010, 56 1, 51–56.

    Google Scholar 

  36. U. Bauer, D. S. O’Brien and M. G. Kimlin, A new method to quantify the application thickness of sunscreen on skin, Photochem. Photobiol., 2010, 86, 1397–1403.

    Article  CAS  Google Scholar 

  37. B. Petersen and H. C. Wulf, Application of sunscreen - theory and reality, Photodermatol., Photoimmunol. Photomed., 2014, 30, 96–101.

    Article  Google Scholar 

  38. P. Isedah, U. Osterwalder and H. W. Lim, Teaspoon rule revisited: proper amount of sunscreen application, Photodermatol., Photoimmunol. Photomed., 2012, 29 1, 55–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Turner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, J., Parisi, A.V., Downs, N. et al. From ultraviolet to Prussian blue: a spectral response for the cyanotype process and a safe educational activity to explain UV exposure for all ages. Photochem Photobiol Sci 13, 1753–1764 (2014). https://doi.org/10.1039/c4pp00166d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00166d

Navigation