Issue 21, 2013

Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation

Abstract

Biodegradable polymers, such as poly(L-lactide) (PLLA), are very useful in many biomedical applications. However, their degradation by-products have been much of a concern as they are the sources of inflammatory reactions in the body. In this work, we suggest a novel composite system composed of PLLA and oligolactide-grafted magnesium hydroxide (Mg-OLA) that can overcome drawbacks caused by poor mechanical properties and inflammatory response of PLLA for biomedical applications. Mg-OLAs were synthesized by ring opening polymerization and the structure, morphology, pH change, thermal, and mechanical properties were analyzed using FTIR, SEM, pH meter, TGA, and UTM. In particular, the tensile strength and modulus of PLLA/Mg80-OLA20 (0–20 wt%) were higher than those of PLLA/magnesium hydroxide. The PLLA/Mg80-OLA20 composite was also very effective in neutralizing the acidic environment caused by the degradable by-product of the PLLA matrix. In vitro cell viability and the expression levels of COX-2 and IL-6 proteins in the PLLA composites were also evaluated. Cell viability increased to around 100% with increasing the amount of Mg80-OLA20 from 0 to 20 wt%. The expression levels of IL-6 and COX-2 were reduced dramatically when increasing the proportion of Mg80-OLA20 from 0 to 50 wt%. As a result, the incorporation of Mg-OLAs into the PLLA matrix could reinforce the mechanical properties as well as reduce the inflammatory response of the hybrid PLLA. Therefore, this hybrid composite system blending oligomer-grafted magnesium hydroxide in biodegradable polymers would be a promising strategy for avoiding current fatal problems in biomedical applications.

Graphical abstract: Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation

Article information

Article type
Paper
Submitted
05 Dec 2012
Accepted
03 Apr 2013
First published
04 Apr 2013

J. Mater. Chem. B, 2013,1, 2764-2772

Biodegradable poly(L-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation

C. H. Kum, Y. Cho, Y. K. Joung, J. Choi, K. Park, S. H. Seo, Y. S. Park, D. J. Ahn and D. K. Han, J. Mater. Chem. B, 2013, 1, 2764 DOI: 10.1039/C3TB00490B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements