Skip to main content
Log in

Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The aim of this research was to develop advanced lipid nanocarriers based on renewable vegetable resources (rice bran oil and raspberry seed oil) that possess self-antioxidative properties, having advantages in terms of minimal side effects and exhibiting the ability to simultaneously co-encapsulate and co-release two active compounds. The focus has been oriented towards developing safe cosmetic formulations with broad-spectrum photoprotection based on these new lipid nanocarriers that contain large amounts of vegetable oils and low concentrations of synthetic UVA and UVB filters (butyl-methoxydibenzoylmethane–BMDBM and octocrylene–OCT). The lipid nanocarriers have a spherical shape and show good physical stability, with a zeta potential in the range of −25.5 to −32.4 mV. Both vegetable oils play a key role in the preparation of efficient nanocarriers, leading to a less ordered arrangement of the lipid core that offers many spaces for the entrapment of large amounts of BMDBM (79%) and OCT (90%), as wells as improved antioxidant activity and UV absorption properties, particularly for the lipid nanocarriers prepared from rice bran oil. By formulating the lipid nanocarriers into creams containing only 3.5% of the UV filters and 10.5% of the vegetable oils, the resulting sunscreens exhibited improved photoprotection, reflecting up to 91% and 93% of UVA and UVB rays, respectively. A new direction of research achieved by this study is the multiple release strategy of both UV filters from the same lipid nanocarrier. After 24 hours, a slow release of BMDBM (less than 4%) and OCT (17.5%) was obtained through a Fick diffusion process. This study demonstrates a significant advance in the areas of both nanotechnology and cosmetics, developing safer cosmetic formulations that possess broad antioxidant, photoprotective and co-release effectiveness due to the existence of a high content of nanostructured vegetable oils combined with a low amount of synthetic UV filters in the same carrier system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Shi, J. Shan, Y. Ju, P. Aikens, R. K. Prud’homme, Nanoparticles as delivery vehicles for sunscreen agents, Colloids Surf., A, 2012, 396, 122–129.

    Article  CAS  Google Scholar 

  2. S. Q. Wang, Y. Balagula, and U. Osterwalder, Photoprotection: a review of the current and future technologies, Dermatol. Ther., 2010, 23, 31–47.

    Article  CAS  PubMed  Google Scholar 

  3. S. González, M. Fernández-Lorente, Y. Gilaberte-Calzada, The latest on skin photoprotection, Clin. Dermatol., 2008, 26, 614–626.

    Article  PubMed  Google Scholar 

  4. A. Fourtanier, D. Moyal, and S. Seite, UVA filters in sun-protection products: regulatory and biological aspects, Photochem. Photobiol. Sci., 2012, 11, 81–89.

    Article  CAS  PubMed  Google Scholar 

  5. J. A. Laszlo, D. L. Compton, F. J. Eller, S. L. Taylor, and T. A. Isbell, Packed-bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols: clean production of a “green” sunscreen, Green Chem., 2003, 5, 382–386.

    Article  CAS  Google Scholar 

  6. S. Diaz-Cruz, M. Llorca, and D. Barcelo, Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment, Trends Anal. Chem., 2008, 27, 873–887.

    Article  CAS  Google Scholar 

  7. D. Kaiser, A. Sieratowicz, H. Zielke, M. Oetken, H. Hollert, and J. Oehlmann, Ecotoxicological effect characterisation of widely used organic UV filters, Environ. Pollut., 2012, 163, 84–90.

    Article  CAS  PubMed  Google Scholar 

  8. M. Schlumpf, K. Kypke, M. Wittassek, J. Angerer, H. Mascher, D. Mascher, C. Vökt, M. Birchler, and W. Lichtensteiger, Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics, Chemosphere, 2010, 81, 1171–1183.

    Article  CAS  PubMed  Google Scholar 

  9. N. A. Shaath, Ultraviolet filters, Photochem. Photobiol. Sci., 2010, 9, 464–469.

    Article  CAS  PubMed  Google Scholar 

  10. N. Serpone, D. Dondi, and A. Albini, Inorganic and organic UV filters: their role and efficacy in sunscreens and sun care products, Inorg. Chim. Acta, 2007, 360, 794–802.

    Article  CAS  Google Scholar 

  11. Y. Gilaberte, and S. González, Update on photoprotection, in Actas Dermo-Sifiliográficas, English edn, 2010, vol. 101, pp. 659–672.

    Article  CAS  PubMed  Google Scholar 

  12. D. S. Bernardi, T. A. Pereira, N. R. Maciel, J. Bortoloto, G. S. Viera, G. C. Oliveira, P. A. Rocha-Filho, Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments, J. Nanobiotechnol., 2011, 9, 44–52.

    Article  CAS  Google Scholar 

  13. M. J. Lerma-García, J. M. Herrero-Martínez, E. F. Simó-Alfonso, C. R. B. Mendonça, G. Ramis-Ramos, Composition, industrial processing and applications of rice bran c-oryzanol, Food Chem., 2009, 115, 389–404.

    Article  CAS  Google Scholar 

  14. C. Santa-María, E. Revilla, E. Miramontes, J. Bautista, A. García-Martínez, E. Romero, M. Carballo, and J. Parrado, Protection against free radicals (UVB irradiation) of a water-soluble enzymatic extract from rice bran. Study using human keratinocyte monolayer and reconstructed human epidermis, Food Chem. Toxicol., 2010, 48, 83–88.

    Article  PubMed  CAS  Google Scholar 

  15. S. M. Snyder, R. M. Low, J. C. Stocks, D. L. Eggett, and T. L. Parker, Juice, pulp and seeds fractionated from dry climate primocane raspberry cultivars (Rubus idaeus) have significantly different antioxidant capacity, anthocyanin content and color, Plant Foods Hum. Nutr., 2012, 67, 358–364.

    Article  CAS  PubMed  Google Scholar 

  16. C. S. Bowen-Forbes, Y. Zhang, and M. G. Nair, Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits, J. Food Compos. Anal., 2010, 23, 554–560.

    Article  CAS  Google Scholar 

  17. F. V. Dulf, S. Andrei, A. Bunea, and C. Socaciu, Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania, Chem. Pap., 2012, 66, 925–934.

    Article  CAS  Google Scholar 

  18. W. Chen, H. Su, Z. Huang, L. Feng, and H. Nie, Neuroprotective effect of raspberry extract by inhibiting peroxynitrite-induced DNA damage and hydroxyl radical formation, Food Res. Int., 2012, 49, 22–26.

    Article  CAS  Google Scholar 

  19. N. P. Seeram, Berry fruits for cancer prevention: current status and future prospects, J. Agric. Food Chem., 2008, 56, 630–635.

    Article  CAS  PubMed  Google Scholar 

  20. B. D. Oomah, S. Ladet, D. V. Godfrey, J. Liang, and B. Girard, Characteristics of raspberry (Rubus idaeus L.) seed oil, Food Chem., 2000, 69, 187–193.

    Article  CAS  Google Scholar 

  21. E. B. Souto, and R. H. Muller, Cosmetic features and applications of lipid nanoparticles (SLN, NLC), Int. J. Cosmet. Sci., 2008, 30, 157–165.

    Article  CAS  PubMed  Google Scholar 

  22. R. H. Muller, R. D. Petersen, A. Hommoss, and J. Pardeike, Nanostructured lipid carriers (NLC) in cosmetic dermal products, Adv. Drug Delivery Rev., 2007, 59, 522–530.

    Article  CAS  Google Scholar 

  23. M. Schäfer-Korting, W. Mehnert, and H. C. Korting, Lipid nanoparticles for improved topical application of drugs for skin diseases, Adv. Drug Delivery Rev., 2007, 59, 427–443.

    Article  CAS  Google Scholar 

  24. E. B. Souto, S. A. Wissing, C. M. Barbosa, and R. H. Muller, Development of a controlled release formulation based on SLN and NLC for topical clotrimazole deliver, Int. J. Pharm., 2004, 278, 71–77.

    Article  CAS  PubMed  Google Scholar 

  25. J. Pardeike, K. Schwabe, and R. H. Muller, Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect, Int. J. Pharm., 2010, 96, 166–173.

    Article  CAS  Google Scholar 

  26. G. K. Xu, Y. Li, B. Li, X. Q. Feng, and H. Gao, Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution, Soft Matter, 2009, 5, 3977–3983.

    Article  CAS  Google Scholar 

  27. S. Nikolić, C. M. Keck, C. Anselmi, and R. H. Muller, Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters, Int. J. Pharm., 2011, 414, 276–284.

    Article  PubMed  CAS  Google Scholar 

  28. J. R. Villalobos-Hernandez, C. C. Muller-Goymann, In vitro erythemal UVA protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax–decyl oleate nanoparticles, Eur. J. Pharm. Biopharm., 2007, 65, 122–125.

    Article  CAS  PubMed  Google Scholar 

  29. C. Puglia, P. Blasi, L. Rizza, A. Schoubben, F. Bonina, C. Rossi, and M. Ricci, Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation, Int. J. Pharm., 2008, 357, 295–304.

    Article  CAS  PubMed  Google Scholar 

  30. Q. Xia, A. Saupe, R. H. Muller, and E. B. Souto, Nanostructured lipid carriers as novel carrier for sunscreen formulations, Int. J. Cosmet. Sci., 2007, 29, 473–482.

    Article  CAS  PubMed  Google Scholar 

  31. I. Lacatusu, N. Badea, A. Murariu, D. Bojin, and A. Meghea, Effect of UV sunscreens loaded in solid lipid nanoparticles: a combinated SPF assay and photostability, Mol. Cryst. Liq. Cryst., 2010, 523, 247–259.

    CAS  Google Scholar 

  32. S. A. Wissing, and R. H. Muller, Cosmetic applications for solid lipid nanoparticles (SLN), Int. J. Pharm., 2003, 254, 65–68.

    Article  CAS  PubMed  Google Scholar 

  33. R. A. Sanad, N. S. Abdel Malak, T. S. El-Bayoomy, Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs), AAPS Pharm. Sci. Tech., 2010, 11, 1684–1694.

    Article  CAS  Google Scholar 

  34. S. A. Wissing, and R. H. Muller, Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration, J. Controlled Release, 2002, 81, 225–233.

    Article  CAS  Google Scholar 

  35. M. A. Albrecht, C. W. Evans, and C. L. Raston, Green chemistry and the health implications of nanoparticles, Green Chem., 2006, 8, 417–432.

    Article  CAS  Google Scholar 

  36. J. Pardeike, A. Hommoss, and R. H. Muller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm., 2009, 366, 170–184.

    Article  CAS  PubMed  Google Scholar 

  37. A. Sharma, S. Kumar, and N. Mahadevan, Nanotechnology: a promising approach for cosmetics, Int. J. Recent Adv. Pharm. Res., 2012, 2, 54–61.

    Google Scholar 

  38. J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, Photostability of sunscreens, J. Photochem. Photobiol., C, 2012, 13, 91–110.

    Article  CAS  Google Scholar 

  39. R. M. Sayre, J. C. Dowdy, A. J. Gerwig, W. J. Shields, and R. V. Lloyd, Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone, Photochem. Photobiol., 2005, 81, 452–456.

    Article  CAS  PubMed  Google Scholar 

  40. G. Niculae, I. Lacatusu, N. Badea, and A. Meghea, Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect, Nanotechnology, 2012, 23, 315704–3157143.

    Article  CAS  PubMed  Google Scholar 

  41. I. Lacatusu, N. Badea, R. Stan, and A. Meghea, Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol, Nanotechnology, 2012, 23, 455702–455713.

    Article  CAS  PubMed  Google Scholar 

  42. I. Lacatusu, N. Badea, O. Oprea, D. Bojin, and A. Meghea, Highly antioxidant carotene - lipid nanocarriers: synthesis and antibacterial activity, J. Nanopart. Res., 2012, 14, 902–915.

    Article  CAS  Google Scholar 

  43. S. Das, and A. Chaudhury, A recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery, AAPS Pharm. Sci. Tech., 2011, 12, 62–76.

    Article  CAS  Google Scholar 

  44. A. Radomska-Soukharev, Stability of lipid excipients in solid lipid nanoparticles, Adv. Drug Delivery Rev., 2007, 59, 411–418.

    Article  CAS  Google Scholar 

  45. S. Kumar, and J. K. Randhawa, Preparation and characterization of Paliperidone loaded solid lipid nanoparticles, Colloids Surf., B, 2013, 102, 562–568.

    Article  CAS  Google Scholar 

  46. L. Montenegro, M. G. Sarpietro, S. Ottimo, G. Puglisi, and F. Castelli, Differential scanning calorimetry studies on sunscreen loaded solid lipid nanoparticles prepared by the phase inversion temperature method, Int. J. Pharm., 2011, 415, 301–306.

    Article  CAS  PubMed  Google Scholar 

  47. U. Ruktanonchai, S. Limpakdee, S. Meejoo, U. Sakulkhu, N. Bunyapraphatsara, V. Junyaprasert, and S. Puttipipatkhachorn, The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles, Nanotechnology, 2008, 19, 095701.

    Article  PubMed  CAS  Google Scholar 

  48. R. H. Muller, K. Mawder, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art, Eur. J. Pharm. Biopharm., 2000, 50, 161–177.

    Article  CAS  PubMed  Google Scholar 

  49. V. Teeranachaideekul, E. B. Souto, V. B. Junyaprasert, and R. H. Muller, Cetyl palmitate-based NLC for topical delivery of coenzyme Q10–development, physicochemical characterization and in vitro release studies, Eur. J. Pharm. Biopharm., 2007, 67, 141–148.

    Article  CAS  PubMed  Google Scholar 

  50. S. S. Chalikwar, V. S. Belgamwar, V. R. Talele, S. J. Surana, and M. U. Patil, Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system, Colloids Surf., B, 2012, 97, 109–116.

    Article  CAS  Google Scholar 

  51. I. Lacatusu, N. Badea, A. Murariu, and A. Meghea, The encapsulation effect of UV molecular absorbers into biocompatible lipid nanoparticles, Nanoscale Res. Lett., 2011, 6, 73–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. M. J. Tsai, P. C. Wu, Y. B. Huang, and J. S. Chang, et al., Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting, Int. J. Pharm., 2012, 423, 461–470.

    Article  CAS  PubMed  Google Scholar 

  53. A. L. Ribeiro de Souza, T. Andreani, F. Nunes, and D. L. Cassimiro, et al., Loading of praziquantel in the crystal lattice of solid lipid nanoparticles, J. Therm. Anal. Calorim., 2012, 108, 353–360.

    Article  CAS  Google Scholar 

  54. M. E. Barbinta-Patrascu, I. R. Bunghez, S. M. Iordache, N. Badea, R. C. Fierascu, and R. M. Ion, Antioxidant silver nanoparticles green synthesized using ornamental plants, J. Nanosci. Nanotechnol., 2013, 13, 2051–2060.

    Article  CAS  PubMed  Google Scholar 

  55. B. L. Diffey, and J. Robson, A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum, J. Soc. Cosmet. Chem., 1989, 40, 127–133.

    CAS  Google Scholar 

  56. P. Costa, J. M. S. Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 2001, 13, 123–133.

    Article  CAS  PubMed  Google Scholar 

  57. D. D. Kumbhar, and V. B. Pokharkar, Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations, Colloids Surf., A, 2013, 416, 32–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelia Meghea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niculae, G., Lacatusu, I., Badea, N. et al. Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations. Photochem Photobiol Sci 13, 703–716 (2014). https://doi.org/10.1039/c3pp50290b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50290b

Navigation