Skip to main content
Log in

Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

WT:

Wild-type enzyme

LH2:

Firefly D-luciferin

Lml:

Luciola mingrelica firefly luciferase

λmax:

Maximum of the bioluminescence spectrum

RLU:

Relative light units

References

  1. K. Niwa, Y. Ichino, S. Kumata, Y. Nakajima, Y. Hiraishi, D. i. Kato, V. R. Viviani, Y. Ohmiya, Quantum Yields and Kinetics of the Firefly Bioluminescence Reaction of Beetle Luciferases, Photochem. Photobiol., 2010, 86, 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  2. A. Lundin, Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites, Methods Enzymol., 2000, 305, 346–370.

    Article  CAS  PubMed  Google Scholar 

  3. S. Wu, E. Chang, Z. Cheng, Molecular Probes for Bioluminescence Imaging, Curr. Org. Synth., 2011, 8, 488–497.

    Article  CAS  Google Scholar 

  4. C. E. Badr, B. A. Tannous, Bioluminescence imaging: progress and applications, Trends Biotechnol., 2011, 29, 624–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Hida, M. Awais, M. Takeuchi, N. Ueno, M. Tashiro, C. Takagi, T. Singh, M. Hayashi, Y. Ohmiya, T. Ozawa, High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases, PLoS One, 2009, 4, e5868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. C. I. Stains, J. L. Furman, J. R. Porter, S. Rajagopal, Y. Li, R. T. Wyatt, I. Ghosh, A General Approach for Receptor and Antibody-Targeted Detection of Native Proteins Utilizing Split-Luciferase Reassembly, ACS Chem. Biol., 2010, 5, 943–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H. Fraga, Firefly luminescence: A historical perspective and recent developments, Photochem. Photobiol. Sci., 2008, 7, 146–158.

    Article  CAS  PubMed  Google Scholar 

  8. S. Hosseinkhani, Molecular enigma of multicolor bioluminescence of firefly luciferase, Cell. Mol. Life Sci., 2011, 68, 1167–1182.

    Article  CAS  PubMed  Google Scholar 

  9. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata, H. Kato, Structural basis for the spectral difference in luciferase bioluminescence, Nature, 2006, 440, 372–376.

    Article  CAS  PubMed  Google Scholar 

  10. J. A. Sundlov, D. M. Fontaine, T. L. Southworth, B. R. Branchini, A. M. Gulick, Crystal Structure of Firefly Luciferase in a Second Catalytic Conformation Supports a Domain Alternation Mechanism, Biochemistry, 2012, 51, 6493–6495.

    Article  CAS  PubMed  Google Scholar 

  11. A. M. Gulick, Conformational Dynamics in the Acyl-CoA Synthetases, Adenylation Domains of Non-ribosomal Peptide Synthetases, and Firefly Luciferase, ACS Chem. Biol., 2009, 4, 811–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V. R. Viviani, The origin, diversity, and structure function relationships of insect luciferases, Cell. Mol. Life Sci., 2002, 59, 1833–1850.

    Article  CAS  PubMed  Google Scholar 

  13. V. R. Viviani, F. G. C. Arnoldi, A. J. S. Neto, T. L. Oehlmeyer, E. J. H. Bechara, Y. Ohmiya, The structural origin and biological function of pH-sensitivity in firefly luciferases, Photochem. Photobiol. Sci., 2008, 7, 159–169.

    Article  CAS  PubMed  Google Scholar 

  14. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, R. A. Magyar, S. A. Gonzalez, M. C. Ruggiero, J. G. Stroh, An alternative mechanism of bioluminescence color determination in firefly luciferase, Biochemistry, 2004, 43, 7255–7262.

    Article  CAS  PubMed  Google Scholar 

  15. B. R. Branchini, D. M. Ablamsky, M. H. Murtiashaw, L. Uzasci, H. Fraga, T. L. Southworth, Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications, Anal. Biochem., 2007, 361, 253–262.

    Article  CAS  PubMed  Google Scholar 

  16. B. R. Branchini, D. M. Ablamsky, J. M. Rosenman, L. Uzasci, T. L. Southworth, M. Zimmer, Synergistic Mutations Produce Blue-Shifted Bioluminescence in Firefly Luciferase, Biochemistry, 2007, 46, 13847–13855.

    Article  CAS  PubMed  Google Scholar 

  17. D.-i. Kato, T. Kubo, M. Maenaka, K. Niwa, Y. Ohmiya, M. Takeo, S. Negoro, Confirmation of color determination factors for Ser286 derivatives of firefly luciferase from Luciola cruciata (LUC-G), J. Mol. Catal. B: Enzym., 2013, 87, 18–23.

    Article  CAS  Google Scholar 

  18. M. I. Koksharov, N. N. Ugarova, Random mutagenesis of Luciola mingrelica firefly luciferase. Mutant enzymes whose bioluminescence spectra show low pH-sensitivity, Biochemistry, 2008, 73, 862–869.

    CAS  PubMed  Google Scholar 

  19. M. I. Koksharov, N. N. Ugarova, Triple substitution G216N/A217L/S398M leads to the active and thermostable Luciola mingrelica firefly luciferase, Photochem. Photobiol. Sci., 2011, 10, 931–938.

    Article  CAS  PubMed  Google Scholar 

  20. N. K. Tafreshi, M. Sadeghizadeh, R. Emamzadeh, B. Ranjbar, H. Naderi-manesh, S. Hosseinkhani, Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases, Biochem. J., 2008, 412, 27–33.

    Article  CAS  PubMed  Google Scholar 

  21. V. R. Viviani, D. T. Amaral, D. R. Neves, A. Simões, F. G. C. Arnoldi, The Luciferin Binding Site Residues C/T311 (S314) Influence the Bioluminescence Color of Beetle Luciferases through Main-Chain Interaction with Oxyluciferin Phenolate, Biochemistry, 2012, 52, 19–27.

    Article  PubMed  CAS  Google Scholar 

  22. M. Nazari, S. Hosseinkhani, L. Hassani, Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective, Photochem. Photobiol. Sci., 2013, 12, 298–308.

    Article  CAS  PubMed  Google Scholar 

  23. N. Kajiyama, E. Nakano, Isolation and characterization of mutants of firefly luciferase which produce different colors of light, Protein Eng., 1991, 4, 691–693.

    Article  CAS  PubMed  Google Scholar 

  24. S.-F. Chen, Y.-J. Liu, I. Navizet, N. Ferré, W.-H. Fang, R. Lindh, Systematic Theoretical Investigation on the Light Emitter of Firefly, J. Chem. Theory Comput., 2011, 7, 798–803.

    Article  CAS  PubMed  Google Scholar 

  25. J. Vieira, L. Pinto da Silva, J. C. G. Esteves da Silva, Advances in the knowledge of light emission by firefly luciferin and oxyluciferin, J. Photochem. Photobiol., B, 2012, 117, 33–39.

    Article  CAS  Google Scholar 

  26. B. S. Alipour, S. Hosseinkhani, S. K. Ardestani, A. Moradi, The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase, Photochem. Photobiol. Sci., 2009, 8, 847–855.

    Article  CAS  Google Scholar 

  27. G. H. Law, O. A. Gandelman, L. C. Tisi, C. R. Lowe, J. A. Murray, Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH tolerance, Biochem. J., 2006, 397, 305–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, H. Boije, S. E. Fleet, A mutagenesis study of the putative luciferin binding site residues of firefly luciferase, Biochemistry, 2003, 42, 10429–10436.

    Article  CAS  PubMed  Google Scholar 

  29. M. I. Koksharov, N. N. Ugarova, Thermostabilization of firefly luciferase by in vivo directed evolution, Protein Eng., Des. Sel., 2011, 24, 835–844.

    Article  CAS  Google Scholar 

  30. Z. Tu, G. He, K. X. Li, M. J. Chen, J. Chang, L. Chen, Q. Yao, D. P. Liu, H. Ye, J. Shi, X. Wu, An improved system for competent cell preparation and high efficiency plasmid transformation using different Escherichia coli strains, Electron J. Biotechnol., 2005, 8, 113–120.

    CAS  Google Scholar 

  31. N. Ugarova, L. Maloshenok, I. Uporov, M. Koksharov, Bioluminescence Spectra of Native and Mutant Firefly Luciferases as a Function of pH, Biochemistry, 2005, 70, 1262–1267.

    CAS  PubMed  Google Scholar 

  32. P. C. Cirino, K. M. Mayer, D. Umeno, Generating mutant libraries using error-prone PCR, Methods Mol. Biol., 2003, 231, 3–9.

    CAS  PubMed  Google Scholar 

  33. K. Miyazaki, F. H. Arnold, Exploring Nonnatural Evolutionary Pathways by Saturation Mutagenesis: Rapid Improvement of Protein Function, J. Mol. Evol., 1999, 49, 716–720.

    Article  CAS  PubMed  Google Scholar 

  34. T. Zako, K. Ayabe, T. Aburatani, N. Kamiya, A. Kitayama, H. Ueda, T. Nagamune, Luminescent and substrate binding activities of firefly luciferase N-terminal domain, Biochim. Biophys. Acta, 2003, 1649, 183–189.

    Article  CAS  PubMed  Google Scholar 

  35. J. D. Bloom, S. T. Labthavikul, C. R. Otey, F. H. Arnold, Protein stability promotes evolvability, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 5869–5874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Hu, Y. Gai, L. Yin, X. Wang, C. Feng, L. Feng, D. Li, X.-N. Jiang, D.-C. Wang, Crystal Structures of a Populus tomentosa 4-Coumarate:CoA Ligase Shed Light on Its Enzymatic Mechanisms, Plant Cell, 2010, 22, 3093–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. P. A. Watkins, D. Maiguel, Z. Jia, J. Pevsner, Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome, J. Lipid Res., 2007, 48, 2736–2750.

    Article  CAS  PubMed  Google Scholar 

  38. J. Shockey, J. Browse, Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants, Plant J., 2011, 66, 143–160.

    Article  CAS  PubMed  Google Scholar 

  39. A. M. Gulick, V. J. Starai, A. R. Horswill, K. M. Homick, J. C. Escalante-Semerena, The 1.75 Å Crystal Structure of Acetyl-CoA Synthetase Bound to Adenosine-5′-propylphosphate and Coenzyme A, Biochemistry, 2003, 42, 2866–2873.

    Article  CAS  PubMed  Google Scholar 

  40. L. C. Tisi, G. H. Law, O. Gandelman, C. R. Lowe and J. A. H. Murray, The basis of the bathochromic shift in the luciferase from Photinus pyralis, in Bioluminescence and Chemiluminescence: Progress and Current Applications, ed. P. E. Stanley and L. J. Kricka, World Scientific, Singapore, 2002, pp. 57–60 10.1021/bi400141u.

    Chapter  Google Scholar 

  41. C. L. Worth, S. Gong, T. L. Blundell, Structural and functional constraints in the evolution of protein families, Nat. Rev. Mol. Cell Biol., 2009, 10, 709–720.

    Article  CAS  PubMed  Google Scholar 

  42. H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, A. Tokida, Increase in bioluminescence intensity of firefly luciferase using genetic modification, Anal. Biochem., 2007, 366, 131–136.

    Article  CAS  PubMed  Google Scholar 

  43. L. Pinto da Silva, J. C. G. Esteves da Silva, TD-DFT/Molecular Mechanics Study of the Photinus pyralis Bioluminescence System, J. Phys. Chem. B, 2012, 116, 2008–2013.

    Article  CAS  PubMed  Google Scholar 

  44. G. B. Sala-Newby, K. M. Taylor, M. N. Badminton, C. M. Rembold, A. K. Campbell, Imaging bioluminescent indicators shows Ca2+ and ATP permeability thresholds in live cells attacked by complement, Immunology, 1998, 93, 601–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. A. Schneider, R. L. Gourse, Relationship between Growth Rate and ATP Concentration in Escherichia coli, J. Biol. Chem., 2004, 279, 8262–8268.

    Article  CAS  PubMed  Google Scholar 

  46. K. R. Harwood, D. M. Mofford, G. R. Reddy, S. C. Miller, Identification of Mutant Firefly Luciferases that Efficiently Utilize Aminoluciferins, Chem. Biol., 2011, 18, 1649–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. B. R. Branchini, R. A. Magyar, M. H. Murtiashaw, N. C. Portier, The role of active site residue arginine 218 in firefly luciferase bioluminescence, Biochemistry, 2001, 40, 2410–2418.

    Article  CAS  PubMed  Google Scholar 

  48. A. Riahi-Madvar, S. Hosseinkhani, Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis, Protein Eng., Des. Sel., 2009, 22, 655–663.

    Article  CAS  Google Scholar 

  49. Y. Hisanaga, H. Ago, N. Nakagawa, K. Hamada, K. Ida, M. Yamamoto, T. Hori, Y. Arii, M. Sugahara, S. Kuramitsu, S. Yokoyama, M. Miyano, Structural Basis of the Substrate-specific Two-step Catalysis of Long Chain Fatty Acyl-CoA Synthetase Dimer, J. Biol. Chem., 2004, 279, 31717–31726.

    Article  CAS  PubMed  Google Scholar 

  50. Y. Oba, M. Furuhashi, M. Bessho, S. Sagawa, H. Ikeya, S. Inouye, Bioluminescence of a firefly pupa: involvement of a luciferase isotype in the dim glow of pupae and eggs in the Japanese firefly, Luciola lateralis, Photochem. Photobiol. Sci., 2013, 12, 854–863.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail I. Koksharov.

Additional information

Electronic supplementary information (ESI) available.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koksharov, M.I., Ugarova, N.N. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence. Photochem Photobiol Sci 12, 2016–2027 (2013). https://doi.org/10.1039/c3pp50242b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50242b

Navigation