Skip to main content
Log in

The photochemical ring opening reaction of chromene as seen by transient absorption and fluorescence spectroscopy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this paper we investigate the photochromic ring-opening reaction of 2,2-diphenyl-5,6-benzo(2 H)chromene. In particular, we study the uncertainties and contradictions in various published reaction models using a combination of transient absorption and fluorescence spectroscopy with femtosecond time resolution. We propose a simplified reaction scheme which is in good agreement with theoretical studies. Here, photoexcitation populates a Franck-Condon state, whose fast vibrational wave packet motion, vibrational relaxation, bond-alternation and/or solvent rearrangement processes occur on the sub-picosecond timescale. Our data suggest that the resulting excited state minimum with picosecond lifetime still features structural characteristics of the closed form. Subsequently, the ring-opened photoproducts are formed in a concerted step from the excited state. The velocity of the photoreaction hence only depends on the time that the molecule needs to reach the transition region between the ground and excited states where the crucial bond breakage occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Irie, Chem. Rev., 2000, 100, 1685–1716.

    Article  CAS  Google Scholar 

  2. N. Tamai, H. Miyasaka, Chem. Rev., 2000, 100, 1875–1890.

    Article  CAS  Google Scholar 

  3. C. Dugave, L. Demange, Chem. Rev., 2003, 103, 2475–2532.

    Article  CAS  Google Scholar 

  4. J. C. Crano and R. J. Guglielmetti, Organic photochromic and thermochromic compounds - Volume 1: Main photochromic families - Introduction, Plenum Press Div Plenum Publishing Corp., New York, 1999.

    Google Scholar 

  5. H. Dürr, Angew. Chem., 2004, 116, 3404–3418.

    Article  Google Scholar 

  6. D. L. Fortin, M. R. Banghart, T. W. Dunn, K. Borges, D. A. Wagenaar, Q. Gaudry, M. H. Karakossian, T. S. Otis, W. B. Kristan, D. Trauner, R. H. Kramer, Nat. Methods, 2008, 5, 331–338.

    Article  CAS  Google Scholar 

  7. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Nature, 2002, 420, 759–760.

    Article  CAS  Google Scholar 

  8. S. W. Hell, Science, 2007, 316, 1153–1158.

    Article  CAS  Google Scholar 

  9. A. Nenov, T. Cordes, T. T. Herzog, W. Zinth, R. De VivieRiedle, J. Phys. Chem. A, 2010, 114, 13016–13030

    Article  CAS  Google Scholar 

  10. T. Cordes, T. Schadendorf, B. Priewisch, K. Ruck-Braun, W. Zinth, J. Phys. Chem. A, 2008, 112, 581–588

    Article  CAS  Google Scholar 

  11. T. Cordes, T. Schadendorf, K. Ruck-Braun, W. Zinth, Chem. Phys. Lett., 2008, 455, 197–201.

    Article  CAS  Google Scholar 

  12. R. S. Becker, J. Kolc, J. Phys. Chem., 1968, 72, 997–1001.

    Article  CAS  Google Scholar 

  13. C. Lenoble, R. S. Becker, J. Photochem., 1986, 33, 187–197.

    Article  CAS  Google Scholar 

  14. G. Ottavi, G. Favaro, V. Malatesta, J. Photochem. Photobiol., A, 1998, 115, 123–128.

    Article  CAS  Google Scholar 

  15. H. Görner, A. K. Chibisov, J. Photochem. Photobiol., A, 2002, 149, 83–89.

    Article  Google Scholar 

  16. B. Moine, J. Rehault, S. Aloise, J. C. Micheau, C. Moustrou, A. Samat, O. Poizat, G. Buntinx, J. Phys. Chem. A, 2008, 112, 4719–4726.

    Article  CAS  Google Scholar 

  17. S. Delbaere, B. Luccioni-Houze, C. Bochu, Y. Teral, M. Campredon, G. Vermeersch, J. Chem. Soc.,Perkin Trans. 2, 1998, 1153–1157.

    Google Scholar 

  18. F. Ortica, P. Smimmo, G. Favaro, U. Mazzucato, S. Delbaere, D. Venec, G. Vermeersch, M. Frigoli, M. C. Corinne, A. Samat, Photochem. Photobiol. Sci., 2004, 3, 878–885.

    Article  CAS  Google Scholar 

  19. F. Zerbetto, S. Monti, G. Orlandi, J. Chem. Soc., Faraday Trans. 2, 1984, 80, 1513–1527.

    Article  CAS  Google Scholar 

  20. J. Aubard, F. Maurel, G. Buntinx, O. Poizat, G. Levi, R. Guglielmetti, A. Samat, Mol. Cryst. Liq. Cryst., 2000, 345, 539–544.

    Google Scholar 

  21. P. L. Gentili, E. Danilov, F. Ortica, M. A. J. Rodgers, G. Favaro, Photochem. Photobiol. Sci., 2004, 3, 886–891.

    Article  CAS  Google Scholar 

  22. B. Moine, G. Buntinx, O. Poizat, J. Rehault, C. Moustrou, A. Samat, J. Phys. Org. Chem., 2007, 20, 936–943.

    Article  CAS  Google Scholar 

  23. J. Hobley, V. Malatesta, K. Hatanaka, S. Kajimoto, S. L. Williams, H. Fukumura, Phys. Chem. Chem. Phys., 2002, 4, 180–184.

    Article  CAS  Google Scholar 

  24. S. Jockusch, N. J. Turro, F. R. Blackburn, J. Phys. Chem. A, 2002, 106, 9236–9241.

    Article  CAS  Google Scholar 

  25. N. Rebiere, C. Moustrou, M. Meyer, A. Samat, R. Guglielmetti, J. C. Micheau, J. Aubard, J. Phys. Org. Chem., 2000, 13, 523–530.

    Article  CAS  Google Scholar 

  26. C. Bottcher, G. Zeyat, S. A. Ahmed, E. Irran, T. Cordes, C. Elsner, W. Zinth, K. Rueck-Braun, Beilstein J. Org. Chem., 2009, 5.

    Google Scholar 

  27. Y. Kodama, T. Nakabayashi, K. Segawa, E. Hattori, M. Sakuragi, N. Nishi, H. Sakuragi, J. Phys. Chem. A, 2000, 104, 11478–11485.

    Article  CAS  Google Scholar 

  28. P. N. Day, Z. Q. Wang, R. Pachter, J. Phys. Chem., 1995, 99, 9730–9738.

    Article  CAS  Google Scholar 

  29. A. Migani, P. L. Gentili, F. Negri, M. Olivucci, A. Romani, G. Favaro, R. S. Becker, J. Phys. Chem. A, 2005, 109, 8684–8692.

    Article  CAS  Google Scholar 

  30. R. Huber, H. Satzger, W. Zinth, J. Wachtveitl, Opt. Commun., 2001, 194, 443–448.

    Article  CAS  Google Scholar 

  31. M. Seel, E. Wildermuth, W. Zinth, Meas. Sci. Technol., 1997, 8, 449–452.

    Article  Google Scholar 

  32. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, W. Zinth, Appl. Phys. B: Lasers Opt., 2000, 71, 457–465.

    Article  CAS  Google Scholar 

  33. T. Wilhelm, J. Piel, E. Riedle, Opt. Lett., 1997, 22, 1494–1496.

    Article  CAS  Google Scholar 

  34. B. Schmidt, S. Laimgruber, W. Zinth, P. Gilch, Appl. Phys. B: Lasers Opt., 2003, 76, 809–814.

    Article  CAS  Google Scholar 

  35. H. Satzger, W. Zinth, Chem. Phys., 2003, 295, 287–295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorben Cordes.

Additional information

† Electronic supplementary information (ESI) available: Additional transient absorption and fluorescence data for different excitation and solvent conditions. See DOI: 10.1039/c3pp50020a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, T.T., Ryseck, G., Ploetz, E. et al. The photochemical ring opening reaction of chromene as seen by transient absorption and fluorescence spectroscopy. Photochem Photobiol Sci 12, 1202–1209 (2013). https://doi.org/10.1039/c3pp50020a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50020a

Navigation