Skip to main content
Log in

Tuning photoinduced processes of covalently bound isoalloxazine and anthraquinone bichromophores

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We present here the synthesis of several new isoalloxazine cyclophanes containing electroactive anthraquinones linked by aliphatic chains of different lengths. Such structural changes provide different interchromophoric orientations leading to the tuning of the rate of the photoinduced electron transfer process from the anthraquinone unit towards the isoalloxazine singlet excited state. Molecular modelling studies were undertaken in order to determine the minimal energy of the proposed structures using Monte Carlo calculations (Amber, Macromodel v.8.1). The compounds have been fully characterised by NMR spectroscopy and the solid state structures of some of the macrocycles have been elucidated. The photophysical studies have been carried out in order to investigate the influence of π–π stacking on the optical properties of the macrocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Stevenson, V. Masseyand C. Willams, Flavins and Flavoproteins 1996, University of Calgary, Calgary, 1997

    Google Scholar 

  2. F. Müller, Chemistry and Biochemistry of Flavoenzymes, CRC Press, Boca Raton, 1991, vol. 1–3.

  3. P. F. Heelis, The photophysical and photochemical properties of flavins (isoalloxazines), Chem. Soc. Rev., 1982, 11, 15

    Article  CAS  Google Scholar 

  4. V. Joosten, W. J. H. Van Berkel, Flavoenzymes, Curr. Opin. Chem. Biol., 2007, 11, 195–202

    Article  CAS  PubMed  Google Scholar 

  5. R. Miura, Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity, Chem. Rec., 2001, 1, 183T.

    Article  Google Scholar 

  6. I. Tchivilev, N. R. Madamanchi, A. E. Vendrov, X.-L. Niu, M. S. Runge, Identification of a protective role for protein phosphatase 1cγ1 against oxidative stress-induced vascular smooth muscle cell apoptosis, J. Biol. Chem., 2008, 283, 22193–22205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. V. Massey, Activation of molecular oxygen by flavins and flavoproteins, J. Biol. Chem., 1994, 269, 22459–22462.

    Article  CAS  PubMed  Google Scholar 

  8. P. Chaiyen, M. W. Fraaije, A. Mattevi, Trends Biochem. Sci., 2012, 37, 373–380.

    Article  CAS  PubMed  Google Scholar 

  9. A. Mattevi, The enigmatic reaction of flavins with oxygen, Trends Biochem. Sci., 2006, 31, 276–283.

    Article  CAS  PubMed  Google Scholar 

  10. J. L. Ross Anderson, S. K. Chapman, Molecular mechanisms of enzyme-catalysed halogenations, Mol. BioSyst., 2006, 2, 350–357.

    Article  CAS  Google Scholar 

  11. S. Weber, Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase, Biochim. Biophys. Acta, Bioenerg., 2005, 1707, 1–23.

    Article  CAS  Google Scholar 

  12. M. Gomelsky, G. Klug, BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms, Trends Biochem. Sci., 2002, 27, 497–500.

    Article  CAS  PubMed  Google Scholar 

  13. S. O. Mansoorabadi, C. J. Thibodeaux, H. W. Liu, The diverse roles of flavin coenzymes-nature’s most versatile thespians, J. Org. Chem., 2007, 72, 6329–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. T. Caldwell, G. Cooke, S. G. Hewage, S. Mabruk, G. Rabani, V. M. Rotello, B. O. Smith, C. Subramanib, P. Woisel, Model systems for flavoenzyme activity: intramolecular self-assembly of a flavin derivative via hydrogen bonding and aromatic interactions, Chem. Commun., 2008, 4126–4128.

    Google Scholar 

  15. A. Niemz, V. M. Rotello, From enzyme to molecular device. Exploring the interdependence of redox and molecular recognition, Acc. Chem. Res., 1999, 32, 44–52.

    Article  CAS  Google Scholar 

  16. E. C. Breinlinger, V. M. Rotello, Model systems for flavoenzyme activity. Modulation of flavin redox potentials through pi-stacking interaction, J. Am. Chem. Soc., 1997, 119, 1165–1166.

    Article  CAS  Google Scholar 

  17. S. Deller, P. Macheroux, S. Sollner, Flavin-dependent quinone reductases, Cell. Mol. Life Sci., 2008, 65, 141–160.

    Article  CAS  PubMed  Google Scholar 

  18. R. H. Thomson, Naturally Occuring Quinones. Recent Advances IV, Chapman and Hall, London, 1997.

    Google Scholar 

  19. B. Uttara, A. V. Singh, P. Zamboni, R. T. Mahajan, Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol., 2009, 7, 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Sollner, S. Deller, P. Macheroux, B. A. Palfey, Density functional description of the electrochemistry and structure property descriptors of substituted flavins, Biochemistry, 2009, 48, 8636–8643.

    Article  CAS  PubMed  Google Scholar 

  21. R. M. G. Hynson, S. M. Kelly, N. C. Price, R. R. Ramsay, Conformational changes in monoamine oxidase A in response to ligand binding or reduction, Biochim. Biophys. Acta, Gen. Subj., 2004, 1672, 60–66

    Article  CAS  Google Scholar 

  22. P. A. W. van der Berg, K. Grever, A. van Hoek, W. J H. van Berkel, A. J. W. G. Visser, Time-resolved fluorescence analysis of the mobile flavin cofactor in p-hydroxybenzoate hydroxylase, J. Chem. Sci., 2007, 119, 123–133

    Article  Google Scholar 

  23. S. Ghisla, V. Massey, New flavins for old: artificial flavins as active site probes of flavoproteins, Biochem. J., 1986, 239, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N. Mataga, H. Chosrowjan, S. Taniguchi, F. Tanaka, N. Kido, M. Kitamura, Femtosecond fluorescence dynamics of flavoproteins: comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces, J. Phys. Chem. B, 2002, 106, 8917–8920.

    Article  CAS  Google Scholar 

  25. F. Tanaka, H. Chosrowjan, S. Taniguchi, N. Mataga, K. Sato, Y. Nishina, K. Shiga, Donor-acceptor distance-dependence of photoinduced electron-transfer rate in flavoproteins, J. Phys. Chem. B, 2007, 111, 5694–5699.

    Article  CAS  PubMed  Google Scholar 

  26. J. H. Borkent, J. W. Verhoeven, Th. J. de Boer, Charge-transfer fluorescence from electron donor-acceptor cyclophanes, influence of geometry and solvent polarity, Chem. Phys. Lett., 1976, 42, 50–53.

    Article  CAS  Google Scholar 

  27. P. Pasman, F. Rob, J. W. Verhoeven, Intramolecular charge-transfer absorption and emission resulting from through-bond interaction in bichromophoric molecules, J. Am. Chem. Soc., 1982, 104, 5127–5133

    Article  CAS  Google Scholar 

  28. P. Pasman, G. F. Mes, N. W. Koper, J. W. Verhoeven, Solvent effects on photoinduced electron transfer in rigid, bichromophoric systems, J. Am. Chem. Soc., 1985, 107, 5839–5843.

    Article  CAS  Google Scholar 

  29. H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. J. Hush, Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges: distance and solvent dependence, J. Am. Chem. Soc., 1987, 109, 3258–3269.

    Article  CAS  Google Scholar 

  30. L. T. Calcaterra, G. L. Closs, J. R. Miller, Fast intramolecular electron transfer in radical ions over long distances across rigid saturated hydrocarbon spacers, J. Am. Chem. Soc., 1983, 105, 670–671.

    Article  CAS  Google Scholar 

  31. Y.-M. Legrand, M. Gray, G. Cooke, V. M. Rotello, Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties, J. Am. Chem. Soc., 2003, 125, 15789–15795.

    Article  CAS  PubMed  Google Scholar 

  32. E. M. Seward, R. B. Hopkins, W. Sauerer, S. W. Tam, F. Diederich, Redox-dependent binding ability of a flavin cyclophane in aqueous solution: hydrophobic stacking versus cavity-inclusion complexation, J. Am. Chem. Soc., 1990, 112, 1783–1790

    Article  CAS  Google Scholar 

  33. P. Mattei, F. Diederich, A flavo-thiazolio-cyclophane as a functional model for pyruvate oxidase, Angew. Chem., Int. Ed. Engl., 1996, 35, 1341–1344.

    Article  CAS  Google Scholar 

  34. H. A. Staab, M. F. Zipplies, T. Muller, M. Storch, C. Krieger, Pyridinio-isoalloxazinophanes as model systems for active-site complexes in flavoenzymes: syntheses, X-ray structure analyses and spectroscopic properties, Chem. Ber., 1994, 127, 1667–1680.

    Article  CAS  Google Scholar 

  35. G. Accorsi, F. Barigelletti, A. Farrán, F. Herranz, R. M. Claramunt, M. Marcaccio, G. Valenti, F. Paolucci, E. Pinilla, M. R. Torres, Intramolecular interactions and photoinduced electron transfer in isoalloxazine-naphthalene bichromophores, J. Photochem. Photobiol., A, 2009, 203, 166–176.

    Article  CAS  Google Scholar 

  36. H. A. Staab, J. Kanellakopulos, P. Kirsch, C. Krieger, π–π interactions of flavins, 5. Syntheses, structures and physical properties of flavin systems with covalent bonding to π donors and π acceptors (quinones), Liebigs Ann. Chem., 1995, 1827–1836.

    Google Scholar 

  37. N. Kandoth, S. D. Choudhury, J. Mohanty, H. Bhasikuttan, A. C. Pal, Inhibiting intramolecular electron transfer in flavin adenine dinucleotide by host–guest interaction: a fluorescence study, J. Phys. Chem. B, 2010, 114, 2617–2626.

    Article  CAS  PubMed  Google Scholar 

  38. S. Shinkai, A. Kawase, T. Yamaguchi, O. Manabe, Y. Wada, F. Yoneda, Y. Ohta, K. Nishimoto, Coenzyme models. 47. Synthesis and reactivity studies of novel flavinophanes and 5-deazaflavinophanes: correlation between flavin reactivity and ring strain, J. Am. Chem. Soc., 1989, 111, 4928–4935.

    Article  CAS  Google Scholar 

  39. V. Sinigersky, K. Müllen, M. Klapper, I. van Schopov, Synthesis and properties of anthracene containing polyethers, Macromol. Chem. Phys., 2000, 201, 1134–1140.

    Article  CAS  Google Scholar 

  40. R. Bryce, T. Finn, A. S. Batsanov, R. Kataky, J. A. K. Howard, S. B. Lyubchik, 2,6-dialkoxy-9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene derivatives: synthesis, electrochemistry and X-ray crystal structures of neutral and dication species, Eur. J. Org. Chem., 2000, 1199–1205.

    Google Scholar 

  41. A. Navas-Diaz, Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review, J. Photochem. Photobiol., A, 1990, 141–167

    Google Scholar 

  42. T. Nakayama, Y. Tori, T. Nagahara, S. Miki, K. Hamanoue, Photophysics and photochemistry of planar alkylanthraquinones (the 1-methyl and 1,4-dimethyl compounds) studied by subpicosecond and nanosecond laser photolysis as well as steady-state photolysis, J. Phys. Chem. A, 1999, 103, 1696–1703

    Article  CAS  Google Scholar 

  43. H. W. Boone, H. K. Hall Jr., Novel polyaromatic quinone imines. 2. Synthesis of model compounds and stereoregular poly(quinoneimines) from disubstituted anthraquinones, Macromolecules, 1996, 29, 5835–5842.

    Article  CAS  Google Scholar 

  44. J. N. Demas, G. A. Crosby, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem., 1971, 75, 991–1024.

    Article  Google Scholar 

  45. M. Montalti, A. Credi, L. Prodiand M. T. Gandolfi, Handbook of Photochemistry, CRC Press, Taylor & Francis, Boca Raton, 3rd edn, 2006.

    Book  Google Scholar 

  46. N. Armaroli, G. Accorsi, J.-P. Gisselbrecht, M. Gross, V. Krasnikov, D. Tsamouras, G. Hadziioannou, M. J. Gomez-Escalonilla, F. Langa, J.-F. Eckertand, J.-F. Nierengarten, Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moiety, J. Mater. Chem., 2002, 12, 2077–2087.

    Article  CAS  Google Scholar 

  47. K. Nakamaru, Synthesis, luminescence quantum yields, and lifetimes of trischelated ruthenium(ii) mixed-ligand complexes including 3,3′-dimethyl-2,2′-bipyridyl, Bull. Chem. Soc. Jpn., 1982, 55, 2697–2705.

    Article  CAS  Google Scholar 

  48. G. M. Sheldrick, Phase annealing in SHELX-90: direct methods for larger structures, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, 467–473

    Article  Google Scholar 

  49. G. M. Sheldrick, The application of direct methods and Patterson interpretation to high- resolution native protein data, Acta Crystallogr., Sect. D: Biol. Crystallogr., 1993, 49, 18–23

    Article  CAS  Google Scholar 

  50. G. M. Sheldrick, SHELX-96 (beta-test) (including SHELXS and SHELXL), 1996.

    Google Scholar 

  51. R. Li, M. A. Bianchet, P. Talalay, L. M. Amzel, The three-dimensional structure of NAD(P)H: quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 8846–8850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Z. Zhou, D. Fisher, J. Spidel, J. Greenfield, B. Patson, A. Fazal, C. Wigal, O. A. Moe, J. D. Madura, Kinetic and docking studies of the interaction of quinones with the quinone reductase active site, Biochemistry, 2003, 42, 1985–1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angeles Farrán or Gianluca Accorsi.

Additional information

Electronic supplementary information (ESI) available: Details of X-ray crystallography, NMR spectroscopy and optimized conformations of compounds MA and MQ. CCDC 894359–894361. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3pp25321j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrán, A., Mohanraj, J., Clarkson, G.J. et al. Tuning photoinduced processes of covalently bound isoalloxazine and anthraquinone bichromophores. Photochem Photobiol Sci 12, 813–822 (2013). https://doi.org/10.1039/c3pp25321j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp25321j

Navigation