Issue 10, 2013

Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia

Abstract

La0.7Sr0.3MnO3 (LSMO) nanoparticles with a size of ∼23 nm have been prepared by a combustion method and functionalized with polyvinylpyrrolidone (PVP) for their possible application in magnetic fluid hyperthermia (MFH). Uncoated and PVP-coated samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometer studies. Magnetic measurements of both coated and uncoated particles reveal the superparamagnetic nature at room temperature. Colloidal stability has been measured in terms of zeta potential. The resulting PVP-coated particles form a stable suspension in phosphate buffer saline (PBS) and double distilled water (DDW) and possess a narrow hydrodynamic size distribution. The induction heating studies of these nanoparticles at different alternating magnetic fields (167.6, 251.4 and 335.2 Oe) were carried out by dispersing nanoparticles in DDW and PBS. These PVP-coated LSMO NPs exhibit a higher specific absorption rate in PBS than in DDW. The results suggest that combustion-synthesized LSMO nanoparticles coated with PVP can be used as potential heating agents in MFH.

Graphical abstract: Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia

Article information

Article type
Paper
Submitted
23 May 2013
Accepted
17 Jul 2013
First published
08 Aug 2013

New J. Chem., 2013,37, 3121-3130

Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia

S. V. Jadhav, D. S. Nikam, V. M. Khot, N. D. Thorat, M. R. Phadatare, R. S. Ningthoujam, A. B. Salunkhe and S. H. Pawar, New J. Chem., 2013, 37, 3121 DOI: 10.1039/C3NJ00554B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements