Issue 14, 2014

Extended scale for the hydrogen-bond basicity of ionic liquids

Abstract

In the past decade, ionic liquids (ILs) have been the focus of intensive research regarding their use as potential and alternative solvents in many chemical applications. Targeting their effectiveness, recent investigations have attempted to establish polarity scales capable of ranking ILs according to their chemical behaviours. However, some major drawbacks have been found since polarity scales only report relative ranks because they depend on the set of probe dyes used, and they are sensitive to measurement conditions, such as purity levels of the ILs and procedures employed. Due to all these difficulties it is of crucial importance to find alternative and/or predictive methods and to evaluate them as a priori approaches capable of providing the chemical properties of ILs. Furthermore, the large number of ILs available makes their experimental characterization, usually achieved by a trial and error methodology, burdensome. In this context, we firstly evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond basicity of ILs. After demonstrating a straight-line correlation between the experimental hydrogen-bond basicity values and the COSMO-RS hydrogen-bonding energies in equimolar cation–anion pairs, an extended scale for the hydrogen-bond accepting ability of IL anions is proposed here. This new ranking of the ILs' chemical properties opens the possibility to pre-screen appropriate ILs (even those not yet synthesized) for a given task or application.

Graphical abstract: Extended scale for the hydrogen-bond basicity of ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2013
Accepted
10 Feb 2014
First published
10 Feb 2014

Phys. Chem. Chem. Phys., 2014,16, 6593-6601

Extended scale for the hydrogen-bond basicity of ionic liquids

A. F. M. Cláudio, L. Swift, J. P. Hallett, T. Welton, J. A. P. Coutinho and M. G. Freire, Phys. Chem. Chem. Phys., 2014, 16, 6593 DOI: 10.1039/C3CP55285C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements