Issue 11, 2012

Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking

Abstract

Hydrogel materials with microscale heterogeneity are of great interest in the effort to spatially control cellular microenvironments in tissue engineering applications. Here we present a microfluidic system to continuously synthesize chemically and physically anisotropic Ca–alginate hydrogel microfibers enabling the guidance of cell proliferation to form linear cell colonies and intracellular networks. The microfluidic gelation process involves 2 critical steps to obtain alginate microfibers using axisymmetric microchannels with uniform depth: introduction of a buffer solution between the sodium alginate (NaA) and CaCl2 solutions to modulate the gelation speed, and use of a thickener to balance the viscosities of the solutions. We synthesized hydrogel fibers with diameters of ∼7 to 200 μm, maintaining the anisotropy in the cross-section, and examined factors affecting the fiber diameter and uniformity. Moreover, parallel alginate flows with and without propylene glycol alginate (PGA) enabled the formation of sandwich-type solid-soft-solid hydrogel fibers, which were used to guide the direction of growth of cells inoculated in the soft-core, with the help of outer polycation membranes made of poly-L-lysine. We demonstrated the formation of linear colonies of 3T3 and HeLa cells inside the anisotropic fiber and observed elongated nuclei along the fiber direction. In addition, the heterogeneous morphology of the fiber was utilized to guide neurite elongation and generate cellular networks by using neuron-like PC12 cells. The hydrogel fibers reported here can be used as an innovative tool for investigating cell and tissue morphogenesis in heterogeneous microenvironments, and for creating tissue models with precise control of cellular alignment and elongation.

Graphical abstract: Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2011
Accepted
05 Jan 2012
First published
03 Feb 2012

Soft Matter, 2012,8, 3122-3130

Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking

M. Yamada, S. Sugaya, Y. Naganuma and M. Seki, Soft Matter, 2012, 8, 3122 DOI: 10.1039/C2SM07263G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements