Issue 6, 2012

Self-organization of tetrapyrrole constituents to give a photoactive protocell

Abstract

A tandem combinatorial reaction of four acyclic, colorless compounds (two α-aminoketones and two diones; one polar and one nonpolar for each) in aqueous solution (30 mM each, 60 °C, pH 7, 24 h) containing lipid vesicles and with or without quinones and solar illumination affords a distribution of up to 538 porphyrins in 1.6–3.9% overall yield. The reactions leading to the porphyrins can occur in either or both the aqueous phase and the hydrophobic membrane of the vesicles. The porphyrins encompass a broad range of polarity and partition in the aqueous-lipid medium. Two fractions obtained by size-exclusion chromatography include porphyrins associated with the lipid vesicles and porphyrins in the aqueous phase. The porphyrins in both phases are photoactive as demonstrated by fluorescence quantum yield measurements (Φf ∼ 0.07–0.08) and by the Krasnovsky reaction (a photosynthetic-like process). The constituents of the Krasnovsky reaction employed here are methyl red, ascorbic acid, and 2,6-dichlorophenolindophenol. Illumination of the two porphyrin-containing samples (aqueous phase or vesicles) in the presence of the Krasnovsky constituents results in the reduction of methyl red and oxidation of ascorbic acid. Thus, the overall process transforms a colorless aqueous suspension via four stages (two combinatorial reactions, oxidation, physical partitioning) to photoactive porphyrins in distinct venues. The process may provide a model for the origin of pigments that enable proto-photosynthesis.

Graphical abstract: Self-organization of tetrapyrrole constituents to give a photoactive protocell

Supplementary files

Article information

Article type
Edge Article
Submitted
26 Dec 2011
Accepted
28 Feb 2012
First published
22 Mar 2012

Chem. Sci., 2012,3, 1963-1974

Self-organization of tetrapyrrole constituents to give a photoactive protocell

A. R. M. Soares, M. Taniguchi, V. Chandrashaker and J. S. Lindsey, Chem. Sci., 2012, 3, 1963 DOI: 10.1039/C2SC01120D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements