Issue 15, 2012

Conformational analysis via calculations and NMR spectroscopy for isomers of the mono(imino)pyridineligand, 2-{(2,6-Me2-C6H3)NC(i-Pr)}C5H4N

Abstract

Sterically hindered (imino)pyridine 2-{(2,6-Me2-C6H3)NC(i-Pr)}C5H4N (1) was synthesized via addition of isolated imidoyl chloride to an in situ lithiated pyridine. Room temperature 1-D and 2-D NMR spectroscopy reveals two rapidly equilibrating isomers in solution. Interconversion of these two isomers was verified by 2D-EXSY NMR spectroscopy. Calculations at the B3LYP and MP2 levels of theory reveal four relevant isomers, with two atropisomers of E geometry (1-EA and 1-EB) and two atropisomers of Z geometry (1-ZA and 1-ZB). A simple carbon–carbon bond rotation to alter the orientation of the isopropyl group provides a fifth, related conformer, 1-ZB, that is the most stable species at the MP2 level. The transition states for E/Z isomerization and the isomerization pathways between atropisomers have been characterized. Comparison of experimental and ab initio NMR chemical shifts in combination with NOE analysis suggests that isomers 1-EB and 1-ZB/1-ZB are the dominant species in our solution phase NMR studies. Our understanding of the isomerization behavior of 1 will help inform the future design of readily complexed, sterically hindered mono(imine) and bis(imine) ligands.

Graphical abstract: Conformational analysis via calculations and NMR spectroscopy for isomers of the mono(imino)pyridine ligand, 2-{(2,6-Me2-C6H3)NC(i-Pr)}C5H4N

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2012
Accepted
01 May 2012
First published
02 May 2012

RSC Adv., 2012,2, 6237-6244

Conformational analysis via calculations and NMR spectroscopy for isomers of the mono(imino)pyridine ligand, 2-{(2,6-Me2-C6H3)NC(i-Pr)}C5H4N

T. J. Dudley, J. E. Beck, E. E. P. Santos, K. A. Johnston, W. S. Kassel, W. G. Dougherty, W. J. Boyko and D. L. Zubris, RSC Adv., 2012, 2, 6237 DOI: 10.1039/C2RA20688A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements