Skip to main content
Log in

Effects of dynamic disorder on exciton delocalization and photoinduced charge separation in DNA

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The nature of electronically excited states in DNA is analyzed in detail using a combination of quantum mechanical (QM) semiempirical calculations and molecular dynamics (MD). For this purpose, we consider homogeneous p stacks extracted from the MD trajectory of a poly(A)·poly(T) oligomer. The environment is accounted for within the QM/MM scheme. The effects of structural fluctuations on exciton delocalization and photoinduced charge separation are explored using the quantitative analysis of the electron density in the excited states. We distinguish the effects generated by the vibronic interactions within nucleobases and by the environment of the p stack. While in ideal B-DNA stacks (A-T)n singlet excited states are spread over all intrastrand nucleobases, the average exciton length is t≈0.75 n, thermal fluctuations decrease considerably the extent of delocalization. The QM/MD model predicts that the excitons in (A-T)n stacks are spread over 3 bases (for n = 4 and 6, the average exciton length is found to be 2.6 ± 0.3 and 2.8 ± 0.3, respectively). We show that the main factor reducing the exciton length is the vibronic interactions within nucleobases whereas fluctuations of the p stack environment play a relatively minor role. The oscillator strength of electronic transitions from the ground state to charge-separated states Ak+Ak±1- and Tk+Tk±1- is found to be strong enough to populate directly these states by UV absorption at E = 5.0-5.3 eV. In contrast, the direct formation of interstrand charge transfer states Ai+Tj- is predicted to be unlikely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernandez, B. Kohler, DNA excited-state dynamics: from single bases to the double helix, Annu. Rev. Phys. Chem., 2009, 60, 217–239.

    Article  CAS  Google Scholar 

  2. C. E. Crespo-Hernandez, B. Cohen, P. M. Hare, B. Kohler, Ultrafast excited-state dynamics in nucleic acids, Chem. Rev., 2004, 104, 1977–2019.

    Article  CAS  Google Scholar 

  3. F. D. Lewis, X. Liu, Y. Wu, X. Zuo, Stepwise evolution of the structure and the electronic properties of DNA, J. Am. Chem. Soc., 2003, 125, 12729–12731.

    Article  CAS  Google Scholar 

  4. C. Su, C. T. Middleton, B. Kohler, Base-stacking disorder and excited-state dynamics in single-stranded adenine homo-oligonucleotides, J. Phys. Chem. B, 2012, 116, 10266–10274.

    Article  CAS  Google Scholar 

  5. K. de La Harpe, B. Kohler, Observation of long-lived excited states in DNA oligonucleotides with significant base sequence disorder, J. Phys. Chem. Lett., 2011, 2, 133–138.

    Article  Google Scholar 

  6. I. Vaya, T. Gustavsson, T. Douki, Y. Berlin, D. Markovitsi, Electronic: excitation energy transfer between nucleobases of natural DNA, J. Am. Chem. Soc., 2012, 134, 11366–11368.

    Article  CAS  Google Scholar 

  7. B. Kohler, Nonradiative decay mechanisms in DNA model systems, J. Phys. Chem. Lett., 2010, 1, 2047–2053.

    Article  CAS  Google Scholar 

  8. I. Vayá, F. A. Miannay, T. Gustavsson, D. Markovitsi, High energy long-lived excited states in DNA double strands, ChemPhysChem, 2010, 11, 987–989.

    Article  Google Scholar 

  9. E. Emanuele, D. Markovitsi, P. Millié, K. Zakrzewska, UV spectra and excitation delocalisation in DNA: influence of the spectral width, ChemPhysChem, 2005, 6, 1387–1392.

    Article  CAS  Google Scholar 

  10. A. Banyasz, T. Douki, R. Improta, T. Gustavsson, D. Onidas, I. Vayá, M. Perron, D. Markovitsi, Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study, J. Am. Chem. Soc., 2012, 134, 14834–14845.

    Article  CAS  Google Scholar 

  11. D. Markovitsi, T. Gustavsson, F. Talbot, Excited states and energy transfer among DNA bases in double helices, Photochem. Photobiol. Sci., 2007, 6, 717–724.

    Article  CAS  Google Scholar 

  12. F.-A. Miannay, A. Banyasz, T. Gustavsson, D. Markovitsi, Ultrafast excited-state deactivation and energy transfer in guanine-cytosine DNA double helices, J. Am. Chem. Soc., 2007, 129, 14574–14575.

    Article  CAS  Google Scholar 

  13. D. Onidas, T. Gustavsson, E. Lazzarotto, D. Markovitsi, Fluorescence of the DNA double helix (dA)20.(dT)20 studied by femtosecond spectroscopy - effect of the duplex size on the properties of the excited states, J. Phys. Chem. B, 2007, 111, 9644–9650.

    Article  CAS  Google Scholar 

  14. C. E. Crespo-Hernandez, B. Kohler, Influence of secondary structure on electronic energy relaxation in adenine homopolymers, J. Phys. Chem. B, 2004, 108, 11182–11188.

    Article  CAS  Google Scholar 

  15. D. Onidas, T. Gustavsson, E. Lazzarotto, D. Markovitsi, Fluorescence of the DNA double helices (dAdT)n. (dAdT)n studied by femtosecond spectroscopy, Phys. Chem. Chem. Phys., 2007, 9, 5143–5148.

    Article  CAS  Google Scholar 

  16. B. Bouvier, T. Gustavsson, D. Markovitsi, P. Millie, Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices, Chem. Phys., 2002, 275, 75–92.

    Article  CAS  Google Scholar 

  17. B. Bouvier, J. P. Dognon, R. Lavery, D. Markovitsi, P. Millie, D. Onidas, K. Zakrzewska, Influence of conformational dynamics on the exciton states of DNA oligomers, J. Phys. Chem. B, 2003, 107, 13512–13522.

    Article  CAS  Google Scholar 

  18. E. Emanuele, D. Markovitsi, P. Millie, K. Zakrzewska, UV spectra and excitation delocalisation in DNA: influence of the spectral width, ChemPhysChem, 2005, 6, 1387–1392.

    Article  CAS  Google Scholar 

  19. D. Nachtigallova, P. Hobza, H. H. Ritze, Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions, Phys. Chem. Chem. Phys., 2008, 10, 5689–5697.

    Article  CAS  Google Scholar 

  20. E. B. Starikov, G. Cuniberti, S. Tanaka, Conformation dependence of DNA exciton parentage, J. Phys. Chem. B, 2009, 113, 10428–10435.

    Article  CAS  Google Scholar 

  21. A. A. Voityuk, Conformational dependence of the electronic coupling for singlet excitation energy transfer in DNA. An INDO/S study, Phys. Chem. Chem. Phys., 2010, 12, 7403–7408.

    Article  CAS  Google Scholar 

  22. G. Olaso-Gonzalez, M. Merchan, L. Serrano-Andres, The role of adenine excimers in the photophysics of oligonucleotides, J. Am. Chem. Soc., 2009, 131, 4368–4377.

    Article  CAS  Google Scholar 

  23. F. Santoro, V. Barone, A. Lami, R. Improta, The excited electronic states of adenine-guanine stacked dimers in aqueous solution: a PCM/TD-DFT study, Phys. Chem. Chem. Phys., 2010, 12, 4934–4948.

    Article  CAS  Google Scholar 

  24. C. Curutchet, A. A. Voityuk, Triplet-triplet energy transfer in DNA: a process that occurs on the nanosecond timescale, Angew. Chem., Int. Ed., 2011, 50, 1820–1822.

    Article  CAS  Google Scholar 

  25. C. Curutchet, A. A. Voityuk, Environment effects on triplet-triplet energy transfer in DNA, Chem. Phys. Lett., 2011, 512, 118–122.

    Article  CAS  Google Scholar 

  26. R. Improta, V. Barone, Interplay between “neutral” and “charge transfer” excimers rules the excited state decay in adenine-rich polynucleotides, Angew. Chem., Int. Ed., 2011, 50, 12016–12019.

    CAS  Google Scholar 

  27. J. P. Gobbo, V. Sauri, D. Roca-Sanjuan, L. Serrano-Andres, M. Merchan, A. C. Borin, On the deactivation mechanisms of adenine-thymine base pair, J. Phys. Chem. B, 2012, 116, 4089–4097.

    Article  CAS  Google Scholar 

  28. I. Buchvarov, Q. Wang, M. Raytchev, A. Trifonov, T. Fiebig, Electronic energy delocalization and dissipation in single- and double-stranded DNA, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 4794–4797.

    Article  CAS  Google Scholar 

  29. U. Kadhane, A. I. S. Holm, S. V. Hoffmann, S. B. Nielsen, Strong coupling between adenine nucleobases in DNAsingle strands revealed by circular dichroism using synchrotron radiation, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2008, 77, 021901.

    Article  Google Scholar 

  30. M. Head-Gordon, A. M. Grana, D. Maurice, C. A. White, Analysis of electronic transitions as the difference of electron attachment and detachment densities, J. Phys. Chem., 1995, 99, 14261–14270.

    Article  CAS  Google Scholar 

  31. C. P. Hsu, Z. Q. You, H. C. Chen, Characterization of the short-range couplings in excitation energy transfer, J. Phys. Chem. C, 2008, 112, 1204–1212.

    Article  CAS  Google Scholar 

  32. F. Plasser, H. Lischka, Analysis of excitonic and charge transfer interactions from quantum chemical calculations, J. Chem. Theory Comput., 2012, 8, 2777–2789.

    Article  CAS  Google Scholar 

  33. D. L. Beveridge, G. Barreiro, K. S. Byun, D. A. Case, T. E. Cheatham, S. B. Dixit, E. Giudice, F. Lankas, R. Lavery, J. H. Maddocks, R. Osman, E. Seibert, H. Sklenar, G. Stoll, K. M. Thayer, P. Varnai, M. A. Young, Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides, Biophys. J., 2004, 87, 3799–3812.

    Article  CAS  Google Scholar 

  34. The data were downloaded in June 2007 from http://humphry.chem.wesleyan.edu:8080

  35. D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, K. M. Merz, D. A. Pearlman, M. Crowley, R. C. Walker, W. Zhang, B. Wang, S. Hayik, A. Roitberg, G. Seabra, K. F. Wong, F. Paesani, X. Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D. H. Mathews, C. Schafmeister, W. S. Ross and P. A. Kollman, AMBER 9, University of California, San Francisco, 2006.

    Google Scholar 

  36. A. A. Voityuk, M. C. Zerner, N. Rösch, Extension of the neglect of diatomic differential overlap method to spectroscopy NDDO-G parametrization and results for organic molecules, J. Phys. Chem. A, 1999, 103, 4553–4559.

    Article  CAS  Google Scholar 

  37. X.-J. Lu, W. K. Olson, 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures, Nucleic Acids Res., 2003, 31, 5108–5121.

    Article  CAS  Google Scholar 

  38. A. A. Voityuk, K. Siriwong, N. Rösch, Environmental fluctuations facilitate electron-hole transfer from guanine to adenine in DNA pi stacks, Angew. Chem., Int. Ed., 2004, 43, 624–627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Voityuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voityuk, A.A. Effects of dynamic disorder on exciton delocalization and photoinduced charge separation in DNA. Photochem Photobiol Sci 12, 1303–1309 (2013). https://doi.org/10.1039/c2pp25389e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25389e

Navigation