Skip to main content
Log in

Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O2(1Δg)] by a cyt c—CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c—CL binding and occurred at pH values higher than 6, consistent with lipid—protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [18O2(1Δg)] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Green and J. C. Reed, Mitochondria and apoptosis, Science, 1998, 281, 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  2. P. Li, D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri and X. Wang, Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, 1997, 91, 479.

    Article  CAS  PubMed  Google Scholar 

  3. G. P. Mueller and W. J. Driscoll, In vitro synthesis of oleoylglycine by cytochrome c points to a novel pathway for the production of lipid signaling molecules, J. Biol. Chem., 2007, 282, 22364–22369.

    Article  CAS  PubMed  Google Scholar 

  4. W. J. Driscoll, S. Chaturvedi and G. P. Mueller, Oleamide synthesizing activity from rat kidney, J. Biol. Chem., 2007, 282, 22353–22363.

    Article  CAS  PubMed  Google Scholar 

  5. S. Basu, A. Keszler, N. A. Azarova, N. Nwanze, A. Perlegas, S. Shiva, K. A. Broniowska, N. Hogg, D. B. Kim-Shapiro, A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formation, Free Radical Biol. Med., 2009, 48, 255–263.

    Article  CAS  Google Scholar 

  6. V. E. Kagan, V. A. Tyurin, J. Jiang, Y. Y. Tyurina, V. B. Ritov, A. A. Amoscato, A. N. Osipov, N. A. Belikova, A. A. Kapralov, V. Kini, I. I. Vlasova, Q. Zhao, M. Zou, P. Di, D. A. Svistunenko, I. V. Kurnikov and G. G. Borisenko, Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nat. Chem. Biol., 2005, 1, 223.

    Article  CAS  PubMed  Google Scholar 

  7. G. Petrosillo, F. M. Ruggiero, M. Pistolese and G. Paradies, Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis, FEBS Lett., 2001, 509, 435–438.

    Article  CAS  PubMed  Google Scholar 

  8. G. Petrosillo, F. M. Ruggiero and G. Paradies, Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria, FASEB J., 2003, 17, 2202–2208.

    Article  CAS  PubMed  Google Scholar 

  9. M. Ott, B. Zhivotovsky and S. Orrenius, Role of cardiolipin in cytochrome c release from mitochondria, Cell Death Differ., 2007, 14, 1243.

    Article  CAS  PubMed  Google Scholar 

  10. M. Rytömaa, P. Mustonen and P. K. Kinnunen, Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes, J. Biol. Chem., 1992, 267, 22243–22248.

    Article  PubMed  Google Scholar 

  11. M. Rytömaa and P. K. Kinnunen, Evidence for two distinct acidic phospholipid-binding sites in cytochrome c, J. Biol. Chem., 1994, 269, 1770–1774.

    Article  PubMed  Google Scholar 

  12. M. Rytömaa and P. K. J. Kinnunen, Reversibility of the binding of cytochrome c to liposomes, J. Biol. Chem., 1995, 270, 3197–3202.

    Article  PubMed  Google Scholar 

  13. E. K. J. Tuominen, C. J. A. Wallace and P. K. J. Kinnunen, Phospholipid–cytochrome c interaction. Evidence for the extended lipid anchorage, J. Biol. Chem., 2002, 277, 8822–8826.

    Article  CAS  PubMed  Google Scholar 

  14. G. P. Gorbenko, J. G. Molotkovsky and P. K. J. Kinnunen, Cytochrome c interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation, Biophys. J., 2006, 90, 4093–4103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. C. U. Mugnol, R. A. Ando, R. Y. Nagayasu, A. Faljoni-Alario, S. Brochsztain, P. S. Santos, O. R. Nascimento and I. L. Nantes, Spectroscopic, structural, and functional characterization of the alternative low-spin state of horse heart cytochrome c, Biophys. J., 2008, 94, 4066–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Schlame, M. Ren, Y. Xu, M. L. Greenberg and I. Haller, Molecular symmetry in mitochondrial cardiolipins, Chem. Phys. Lipids, 2005, 138, 38.

    Article  CAS  PubMed  Google Scholar 

  17. H.-Y. J. Wang, S. N. Jackson and A. S. Woods, Direct MALDI-MS analysis of cardiolipin from rat organs sections, J. Am. Soc. Mass Spectrom., 2007, 18, 567.

    Article  CAS  PubMed  Google Scholar 

  18. G. Balakrishnan, Y. Hu, O. F. Oyerinde, J. Su, J. T. Groves and T. G. Spiro, A conformational switch to β-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis, J. Am. Chem. Soc., 2007, 129, 504–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. R. Zucchi, O. R. Nascimento, A. Faljoni-Alario, T. Prieto and I. L. Nantes, Modulation of cytochrome c spin states by lipid acyl chains: a continuous-wave electron paramagnetic resonance (CW-EPR) study of haem iron, Biochem. J., 2003, 370, 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. N. A. Belikova, Y. Y. Tyurina, G. Borisenko, V. Tyurin, A. K. Samhan Arias, N. Yanamala, P. G. Furtmüller, J. Klein-Seetharaman, C. Obinger and V. E. Kagan, Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria, J. Am. Chem. Soc., 2009, 131, 11288–11289.

    Article  CAS  PubMed  Google Scholar 

  21. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work, Photochem. Photobiol., 1992, 55, 145–157.

    Article  CAS  PubMed  Google Scholar 

  22. D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  23. N. I. Krinsky, Singlet excited oxygen as a mediator of antibacterial action of leukocytes, Science, 1974, 186, 363–365.

    Article  CAS  PubMed  Google Scholar 

  24. M. J. Steinbeck, A. U. Khan and M. J. Karnovsky, Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap, J. Biol. Chem., 1992, 267, 13425.

    Article  CAS  PubMed  Google Scholar 

  25. B. M. Babior, Oxygen-dependent microbial killing by phagocytes, N. Engl. J. Med., 1978, 298, 659–668.

    Article  CAS  PubMed  Google Scholar 

  26. A. U. Khan and M. Kasha, Singlet molecular oxygen in the Haber–Weiss reaction, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 12365–12367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Miyamoto, G. E. Ronsein, F. M. Prado, M. Uemi, T. C. Correa, I. N. Toma, A. Bertolucci, M. C. B. Oliveira, F. D. Motta, M. H. G. Medeiros, P. Di Mascio, Biological hydroperoxides and singlet molecular oxygen generation, IUBMB Life, 2007, 59, 322–331.

    Article  CAS  PubMed  Google Scholar 

  28. S. Miyamoto, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio, Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements, J. Am. Chem. Soc., 2003, 125, 6172–6179.

    Article  CAS  PubMed  Google Scholar 

  29. S. Miyamoto, G. R. Martinez, A. P. B. Martins, M. H. G. Medeiros, P. Di Mascio, Direct evidence of singlet molecular oxygen production in the reaction of linoleic acid hydroperoxide with peroxynitrite, J. Am. Chem. Soc., 2003, 125, 4510–4517.

    Article  CAS  PubMed  Google Scholar 

  30. S. Miyamoto, G. R. Martinez, D. Rettori, O. Augusto, M. H. G. Medeiros, P. Di Mascio, Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 293–298.

    Article  CAS  PubMed  Google Scholar 

  31. P. Di Mascio and H. Sies, Quantification of singlet oxygen generated by thermolysis of 3,3′-(1,4-naphthylene)dipropionate endoperoxide. Monomol and dimol photoemission and the effects of 1,4-diazabicyclo[2.2.2]octane, J. Am. Chem. Soc., 1989, 111, 2909–2914.

    Article  Google Scholar 

  32. G. R. Martinez, P. Di Mascio, M. G. Bonini, O. Augusto, K. Briviba, H. Sies, P. Maurer, U. Rothlisberger, S. Herold and W. H. Koppenol, Peroxynitrite does not decompose to singlet oxygen (1ΔgO2) and nitroxyl (NO), Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 10307–10312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G. R. Bartlett, Phosphorus assay in column chromatography, J. Biol. Chem., 1959, 234, 466–468.

    Article  CAS  PubMed  Google Scholar 

  34. R. C. MacDonald, R. I. MacDonald, B. P. M. Menco, K. Takeshita, N. K. Subbarao, L.-r. Hu, Small-volume extrusion apparatus for preparation of large, unilamellar vesicles, Biochim. Biophys. Acta, Biomembr., 1991, 1061, 297–303.

    Article  CAS  Google Scholar 

  35. S. Miyamoto, C. Dupas, K. Murota and J. Terao, Phospholipid hydroperoxides are detoxified by phospholipase A2 and GSH peroxidase in rat gastric mucosa, Lipids, 2003, 38, 641–649.

    Article  CAS  PubMed  Google Scholar 

  36. C. Pierlot, J. M. Aubry, K. Briviba, H. Sies, P. Di Mascio, Naphthalene endoperoxides as generators of singlet oxygen in biological media, Methods Enzymol., 2000, 319, 3–20.

    Article  CAS  PubMed  Google Scholar 

  37. F. Sinibaldi, B. Howes, M. Piro, F. Polticelli, C. Bombelli, T. Ferri, M. Coletta, G. Smulevich and R. Santucci, Extended cardiolipin anchorage to cytochrome c: a model for protein–mitochondrial membrane binding, JBIC, J. Biol. Inorg. Chem., 2010, 15, 689–700.

    Article  CAS  PubMed  Google Scholar 

  38. I. L. Nantes, M. R. Zucchi, O. R. Nascimento, A. Faljoni-Alario, Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces. A CD and EPR investigation, J. Biol. Chem., 2001, 276, 153–158.

    Article  CAS  PubMed  Google Scholar 

  39. C. Kawai, F. M. Prado, G. L. C. Nunes, P. Di Mascio, A. M. Carmona-Ribeiro and I. L. Nantes, pH-dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids, J. Biol. Chem., 2005, 280, 34709–34717.

    Article  CAS  PubMed  Google Scholar 

  40. V. E. Kagan, H. A. BayIr, N. A. Belikova, O. Kapralov, Y. Y. Tyurina, V. A. Tyurin, J. Jiang, D. A. Stoyanovsky, P. Wipf, P. M. Kochanek, J. S. Greenberger, B. Pitt, A. A. Shvedova and G. Borisenko, Cytochrome c/cardiolipin relations in mitochondria: a kiss of death, Free Radical Biol. Med., 2009, 46, 1439.

    Article  CAS  Google Scholar 

  41. C. Kawai, F. S. Pessoto, T. Rodrigues, K. C. U. Mugnol, V. Tórtora, L. Castro, V. A. Milícchio, I. L. S. Tersariol, P. Di Mascio, R. Radi, A. M. Carmona-Ribeiro and I. L. Nantes, pH-Sensitive binding of cytochrome c to the inner mitochondrial membrane. Implications for the participation of the protein in cell respiration and apoptosis, Biochemistry, 2009, 48, 8335–8342.

    Article  CAS  PubMed  Google Scholar 

  42. J. M. Stewart, J. A. Blakely and M. D. Johnson, The interaction of ferrocytochrome c with long-chain fatty acids and their CoA and carnitine esters, Biochem. Cell Biol., 2000, 78, 675–681.

    Article  CAS  PubMed  Google Scholar 

  43. N. A. Belikova, Y. A. Vladimirov, A. N. Osipov, A. A. Kapralov, V. A. Tyurin, M. V. Potapovich, L. V. Basova, J. Peterson, I. V. Kurnikov and V. E. Kagan, Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes, Biochemistry, 2006, 45, 4998–5009.

    Article  CAS  PubMed  Google Scholar 

  44. G. R. Buettner, The pecking order of free radicals and antioxidants: lipid peroxidation, [alpha]-tocopherol, and ascorbate, Arch. Biochem. Biophys., 1993, 300, 535–543.

    Article  CAS  PubMed  Google Scholar 

  45. G. A. Russell, Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons–mechanism of the interaction of peroxy radicals, J. Am. Chem. Soc., 1957, 79, 3871–3877.

    Article  CAS  Google Scholar 

  46. R. Radi, J. F. Turrens and B. A. Freeman, Cytochrome-c-catalyzed membrane lipid-peroxidation by hydrogen-peroxide, Arch. Biochem. Biophys., 1991, 288, 118–125.

    Article  CAS  PubMed  Google Scholar 

  47. E. Cadenas, A. Boveris and B. Chance, Chemiluminescence of lipid vesicles supplemented with cytochrome c and hydroperoxide, Biochem. J., 1980, 188, 577–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D. P. Barr, M. R. Gunther, L. J. Deterding, K. B. Tomer and R. P. Mason, ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide, J. Biol. Chem., 1996, 271, 15498–15503.

    Article  CAS  PubMed  Google Scholar 

  49. T. Rodrigues, L. P. de França, C. Kawai, P. A. de Faria, K. C. U. Mugnol, F. M. Braga, I. L. S. Tersariol, S. S. Smaili and I. L. Nantes, Protective role of mitochondrial unsaturated lipids on the preservation of the apoptotic ability of cytochrome c exposed to singlet oxygen, J. Biol. Chem., 2007, 282, 25577–25587.

    Article  CAS  PubMed  Google Scholar 

  50. T. Schulte-Herbrüggen and H. Sies, The peroxidase/oxidase activity of soybean lipoxygenase–I. Triplet excited carbonyls from the reaction with isobutanal and the effect of glutathione, Photochem. Photobiol., 1989, 49, 697–704.

    Article  PubMed  Google Scholar 

  51. I. L. Nantes, E. J. H. Bechara and G. Cilento, Horseradish peroxidase-catalyzed generation of acetophenone and benzophenone in the triplet state, Photochem. Photobiol., 1996, 63, 702–708.

    Article  CAS  Google Scholar 

  52. G. Cilento and W. Adam, From free-radicals to electronically excited species, Free Radical Biol. Med., 1995, 19, 103–114.

    Article  CAS  Google Scholar 

  53. A. M. Almeida, E. J. H. Bechara, A. E. Vercesi and I. L. Nantes, Diphenylacetaldehyde-generated excited states promote damage to isolated rat liver mitochondrial DNA, phospholipids, and proteins, Free Radical Biol. Med., 1999, 27, 744–751.

    Article  CAS  Google Scholar 

  54. K. R. Kopecky and C. Mumford, Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane, Can. J. Chem., 1969, 47, 709–711.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sayuri Miyamoto or Paolo Di Mascio.

Additional information

Electronic supplementary information (ESI) available: Analysis of CL hydroperoxide content; MS analysis of 18-oxygen labeled CL hydroperoxides; DHPNO2 emission signal; and visible light emission enhancement by DBAS. See DOI: 10.1039/c2pp25119a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, S., Nantes, I.L., Faria, P.A. et al. Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen. Photochem Photobiol Sci 11, 1536–1546 (2012). https://doi.org/10.1039/c2pp25119a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25119a

Navigation