Issue 5, 2012

The structure and reactivity of iron nitride complexes

Abstract

The structure and reactivity of discrete iron nitride complexes is described. Six-coordinate, four-fold symmetric nitrides are thermally unstable, and have been characterized at cryogenic temperatures by an arsenal of spectroscopic methods. By contrast, four-coordinate, three-fold symmetric iron nitrides can be prepared at room temperature. A range of diamagnetic iron(IV) nitrides have been reported and in some cases, isolated. Among these are the isolable, yet reactive, tris(carbene)borate iron(IV) nitrides. These complexes can effect two-electron nitrogen atom transfer to a range of substrates, in some cases with complete atom transfer occuring through Fe–N bond cleavage. These nitrides are also active in single electron pathways, including the synthesis of ammonia by a mechanism involving hydrogen atom transfer to the nitride ligand. One-electron oxidation of a tris(carbene)borate iron(IV) nitride leads to an isolable iron(V) complex that is unusually reactive for a metal nitride.

Graphical abstract: The structure and reactivity of iron nitride complexes

Article information

Article type
Perspective
Submitted
04 Sep 2011
Accepted
24 Oct 2011
First published
24 Nov 2011

Dalton Trans., 2012,41, 1423-1429

The structure and reactivity of iron nitride complexes

J. M. Smith and D. Subedi, Dalton Trans., 2012, 41, 1423 DOI: 10.1039/C1DT11674F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements