Skip to main content
Log in

Highly emissive metal—organic framework composites by host—guest chemistry

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The unique host—guest chemistry of metal—organic frameworks (MOFs) can be used to implement additional properties by loading the cavities with functional molecules or even nanoparticles. We describe the gas-phase loading of MOFs featuring either a three-dimensional (MOF-5, MOF-177 and UMCM-1) or one-dimensional channel system (MIL-53(Al)) with the highly emissive perylene derivative N, N-bis(2,6-dimethylphenyl)-3,4: 9,10-perylene tetracarboxylic diimide (DXP) or an iridium complex, (2-carboxypyridyl)bis(3,5-difluoro-2-(2-pyridyl)phenyl)iridium(iii) (FIrpic). The resulting host—guest composites show strong luminescence, with their optical properties being dominated by the guest species. DXP-loaded MOFs exhibit a high stability towards guest displacement by solvent molecules, while the interaction of FIrpic with the host is weaker. The emissive properties of intercalated DXP also indicate host—guest interactions such as caging effects, strong quenching of the MOF host emission, as well as aggregate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 2002, 295, 469–472.

    Article  CAS  Google Scholar 

  2. G. Férey, Hybrid porous solids: past, present, future, Chem. Soc. Rev., 2008, 37, 191–214.

    Article  Google Scholar 

  3. J. R. Long and O. M. Yaghi, The pervasive chemistry of metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1213–1214.

    Article  CAS  Google Scholar 

  4. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyen and J. T. Hupp, The metal organic framework as a catalyst, Chem. Soc. Rev., 2009, 38, 1450–1459.

    Article  CAS  Google Scholar 

  5. M. Müller, S. Hermes, K. Kähler, M. W. E. van den Berg, M. Muhler and R. A. Fischer, Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis, Chem. Mater., 2008, 20, 4576–4587.

    Article  Google Scholar 

  6. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1477–1504.

    Article  CAS  Google Scholar 

  7. Z. Wang and S. M. Cohen, Postsynthetic modification of metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1315–1329.

    Article  CAS  Google Scholar 

  8. C. J. Doonan, W. Morris, H. Furukawa and O. M. Yaghi, Isoreticular metalation of metal–organic frameworks, J. Am. Chem. Soc., 2009, 131, 9492–9493.

    Article  CAS  Google Scholar 

  9. M. Kurmoo, Magnetic metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1353–1379.

    Article  CAS  Google Scholar 

  10. S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer and R. A. Fischer, Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angew. Chem., Int. Ed., 2005, 44, 6237–6241.

    Article  CAS  Google Scholar 

  11. M. Müller, O. I. Lebedev and R. A. Fischer, Gas-phase loading of [Zn4O(btb)2] (MOF-177) with organometallic CVD-precursors: inclusion compounds of the type [LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177, J. Mater. Chem., 2008, 18, 5274–5281.

    Article  Google Scholar 

  12. S. J. Yang, J. Y. Choi, H. K. Chae, J. H. Cho, K. S. Nahm and C. R. Park, Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite, Chem. Mater., 2009, 21, 1893–1897.

    Article  CAS  Google Scholar 

  13. X.-P. Zhou, Z. Xu, M. Zeller and A. D. Hunter, Reversible uptake of HgCl2 in a porous coordination polymer based on the dual functions of carboxylate and thioether, Chem. Commun., 2009, 5439–5441.

    Google Scholar 

  14. M. D. Allendorf, C. A. Bauer, R. K. Bhakta and R. J. T. Houk, Luminescent metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1330–1352.

    Article  CAS  Google Scholar 

  15. T. K. Maji, G. Mostafa, H.-C. Chang and S. Kitagawa, Porous lanthanide–organic framework with zeolite-like topology, Chem. Commun., 2005, 2436–2438.

    Google Scholar 

  16. B. T. N. Pham, L. M. Lund and D. Song, Novel luminescent metal–organic frameworks [Eu2L3(DMSO)2(MeOH)2]·2DMSO·3H2O and [Zn2L2(DMSO)2]·1.6H2O (L = 4,4′-ethyne-1,2-diyldibenzoate), Inorg. Chem., 2008, 47, 6329–6335.

    Article  CAS  Google Scholar 

  17. M. Du, X. J. Jiang and X. J. Zhao, Molecular tectonics of mixed-ligand metal–organic frameworks: Positional isomeric effect, metal-directed assembly, and structural diversification, Inorg. Chem., 2007, 46, 3984–3995.

    Article  CAS  Google Scholar 

  18. D. F. Sun, D. J. Collins, Y. X. Ke, J. L. Zuo and H. C. Zhou, Construction of open metal–organic frameworks based on predesigned carboxylate isomers: from achiral to chiral nets, Chem. Eur. J., 2006, 12, 3768–3776.

    Article  CAS  Google Scholar 

  19. Y. K. Park, S. B. Choi, H. Kim, K. Kim, B.-H. Won, K. Choi, J.-S. Choi, W.-S. Ahn, N. Won, S. Kim, D. H. Jung, S.-H. Choi, G.-H. Kim, S.-S. Cha, J. H. Jhon, J. K. Yang and J. Kim, Crystal structure and guest uptake of a mesoporous metal–organic framework containing cages of 3.9 and 4.7 nm in diameter, Angew. Chem., Int. Ed., 2007, 46, 8230–8233.

    Article  CAS  Google Scholar 

  20. M. Busby, C. Blum, M. Tibben, S. Fibikar, G. Calzaferri, V. Subramaniam, L. De Cola, Time, space, and spectrally resolved studies on J-aggregate interactions in zeolite L nanochannels, J. Am. Chem. Soc., 2008, 130, 10970–10976.

    Article  CAS  Google Scholar 

  21. A. Rademacher, S. Maerkle and H. Langhals, Soluble perylene fluorescent dyes with high photostability, Chem. Ber., 1982, 115, 2927–2934.

    Article  CAS  Google Scholar 

  22. G. Calzaferri, S. Huber, H. Maas and C. Minkowski, Host–guest antenna materials, Angew. Chem., Int. Ed., 2003, 42, 3732–3758.

    Article  CAS  Google Scholar 

  23. H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe and O. M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 2004, 427, 523–527.

    Article  CAS  Google Scholar 

  24. Q.-R. Fang, G.-S. Zhu, Z. Jin, Y.-Y. Ji, J.-W. Ye, M. Xue, H. Yang, Y. Wang and S.-L. Qiu, Mesoporous metal–organic framework with rare etb topology for hydrogen storage and dye assembly, Angew. Chem., Int. Ed., 2007, 46, 6638–6642.

    Article  CAS  Google Scholar 

  25. H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework, Nature, 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  26. K. Koh, A. G. Wong-Foy and A. J. Matzger, A crystalline mesoporous coordination copolymer with high microporosity, Angew. Chem., Int. Ed., 2008, 47, 677–680.

    Article  CAS  Google Scholar 

  27. S. Hermes, F. Schröder, S. Amirjalayer, R. Schmid and R. A. Fischer, Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5, J. Mater. Chem., 2006, 16, 2464–2472.

    Article  CAS  Google Scholar 

  28. Y. You and S. Y. Park, Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: facile and efficient color tuning over the whole visible range by the ancillary ligand structure, J. Am. Chem. Soc., 2005, 127, 12438–12439.

    Article  CAS  Google Scholar 

  29. S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.-P. Lillerud, M. Bjorgen and A. Zecchina, Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour, Chem. Commun., 2004, 2300–2301.

    Google Scholar 

  30. J. Sauer, F. Marlow, B. Spliethoff, F. Schüth, Rare earth oxide coating of the walls of SBA-15, Chem. Mater., 2002, 14, 217–224.

    Article  CAS  Google Scholar 

  31. B. Marler, U. Oberhagemann, S. Vortmann and H. Gies, Microporous Mesoporous Mater., 1996, 6, 375–383.

    Article  CAS  Google Scholar 

  32. J. Hafizovic, M. Bjørgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti and K.-P. Lillerud, The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities, J. Am. Chem. Soc., 2007, 129, 3612–3620.

    Article  CAS  Google Scholar 

  33. H. Kim, H. Chun, G.-H. Kim, H.-S. Lee and K. Kim, Vapor phase inclusion of ferrocene and its derivative in a microporous metal–organic porous material and its structural characterizationby single crystal X-ray diffraction, Chem. Commun., 2006, 2759–2761.

    Google Scholar 

  34. S. A. El-Daly, Spectral, lifetime, fluorescence quenching, energy transfer and photodecomposition of N, N′-bis(2,6-dimethyl phenyl)-3,4:9,10-perylentetracarboxylic diimide (DXP), Spectrochim. Acta, Part A, 1999, 55, 143–152.

    Article  Google Scholar 

  35. J. Hofkens, T. Vosch, M. Maus, F. Kohn, M. Cotlet, T. Weil, A. Herrmann, K. Mullen, F. C. De Schryver, Conformational rearrangements in and twisting of a single molecule, Chem. Phys. Lett., 2001, 333, 255–263.

    Article  CAS  Google Scholar 

  36. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Blue organic electrophosphorescence using exothermic host–guest energy transfer, Appl. Phys. Lett., 2003, 82, 2422–2424.

    Article  CAS  Google Scholar 

  37. G. Calzaferri and A. Devaux, Manipulation of energy transfer processes within the channels of zeolite L, in Supramolecular Effects in Photochemical and Photophysical Processes, ed. V. Ramamurthy and Y. Inoue, John Wiley & Sons, 2010, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luisa De Cola or Roland A. Fischer.

Additional information

Electronic supplementary information (ESI) available: Powder XRD patterns,1H- and13C-MAS-NMR spectra, and Raman measurements. See DOI: 10.1039/c0pp00070a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Devaux, A., Yang, CH. et al. Highly emissive metal—organic framework composites by host—guest chemistry. Photochem Photobiol Sci 9, 846–853 (2010). https://doi.org/10.1039/c0pp00070a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00070a

Navigation