Skip to main content
Log in

Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two difluoroboron dipyrromethene (BODIPY) based fluorescent dyes–4,4-difluoro-3-2-[4-(dimethylamino)phenyl]ethenyl-8-[4-(methoxycarbonyl)phenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (1) and 4,4-difluoro-3-[2-(4-fluoro-3-hydroxyphenyl)ethenyl]-8-[4-(methoxycarbonyl)phenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (3)–have been synthesized via condensation of p-N,N-dimethylaminobenzaldehyde and 4-fluoro-3-hydroxybenzaldehyde, respectively, with 4,4-difluoro-8-[4-(methoxycarbonyl)phenyl]-1,3,5,7-tetramethyl-3a,4a-diaza-4-bora-s-indacene (2). UV–vis spectrophotometry and steady-state and time-resolved fluorometry have been used to study the spectroscopic and photophysical characteristics of 1–3 in various solvents. The multi-parameter Kamlet–Taft π*, α, β solvent scales and a new, generalized treatment of the solvent effect, proposed by Catalán (J. Phys. Chem. B, 2009, 113, 5951–5960), have been used in the analysis of the solvatochromic shifts of the UV–vis absorption and fluorescence emission maxima of 1–3, and the rate constants of excited-state deactivation via fluorescence (kf) and radiationless decay (knr). The four Catalán solvent scales (dipolarity, polarizability, acidity and basicity of the medium) are the most appropriate for describing the solvatochromic effects. Solvent dipolarity and polarizability are the important causes for the solvatochromism of 1. Conversely, the absorption and emission maxima of 2 and 3 are hardly dependent on the solvent: the small changes reflect primarily the polarizability of the solvent surrounding the dye. Fluorescence decay profiles of 1 can be described by a single-exponential function in aprotic solvents, whereas two decay times are found in alcohols. The fluorescence decays of 2 (lifetimes τ in 1.9–2.9 ns range) and 3 (τ between 3.5 and 4.0 ns) are mono-exponential in all solvents studied. The fluorescence properties of dye1 are very sensitive to the solvent: upon increasing solvent dipolarity, the fluorescence quantum yields and kf values decrease and the emission maxima become more red-shifted. The kf values of 2 [(1.6 ± 0.3) × 108 s−1] and 3 [(1.5 ± 0.2) × 108 s−1] are practically independent of the solvent properties. The crystal structure of 2 reveals that the BODIPY core is nearly planar with the boron atom moved out of the plane. The angle between the phenyl group at the meso-position and the BODIPY plane equals 80°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Treibs, F.-H. Kreuzer, Difluorboryl-Komplexe von Di- und Tripyrrylmethenen, Justus Liebigs Ann. Chem., 1968, 718, 208–223.

    Article  CAS  Google Scholar 

  2. R. P. Haugland, The Handbook. A Guide to Fluorescent Probes and Labeling Technologies, 10th edn; Molecular Probes, Inc., Eugene (Oregon, USA), 2005.

    Google Scholar 

  3. A. Loudet and K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev., 2007 107, 4891–4932.

    Article  CAS  PubMed  Google Scholar 

  4. G. Ulrich, R. Ziessel and A. Harriman, The chemistry of fluorescent Bodipy dyes: versatility unsurpassed, Angew. Chem., Int. Ed., 2008 47, 1184–1201.

    Article  CAS  Google Scholar 

  5. E. Vos de Wael, J. A. Pardoen, J. A. van Koeveringe and J. Lugtenburg, Pyrromethene-BF2 complexes (4,4′-difluoro-4-bora-3a,4a-diaza-s-indacenes). Synthesis and luminescence properties, Recl. Trav. Chim. Pays-Bas, 1977 96, 306–309.

    Article  Google Scholar 

  6. J. Karolin, L. B.-Å. Johansson, L. Strandberg and T. Ny, Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes and proteins, J. Am. Chem. Soc., 1994 116, 7801–7806.

    Article  CAS  Google Scholar 

  7. M. Kollmannsberger, K. Rurack, U. Resch-Genger and J. Daub, Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes, J. Phys. Chem. A, 1998 102, 10211–10220.

    Article  CAS  Google Scholar 

  8. T. López Arbeloa, F. López Arbeloa, I. López Arbeloa, I. García-Moreno, A. Costela, R. Sastre and F. Amat-Guerri, Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution, Chem. Phys. Lett., 1999 299, 315–321.

    Article  Google Scholar 

  9. K. Rurack, M. Kollmannsberger and J. Daub, A highly efficient sensor molecule emitting in the near infrared (NIR): 3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene, New J. Chem., 2001 25, 289–292.

    Article  CAS  Google Scholar 

  10. K. Rurack, M. Kollmannsberger and J. Daub, Molecular switching in the Near Infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem., Int. Ed., 2001 40, 385–387.

    Article  CAS  Google Scholar 

  11. F. Bergström, I. Mikhalyov, P. Hägglöf, R. Wortmann, T. Ny, L. B.-Å. Johansson, Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology, J. Am. Chem. Soc., 2002 124, 196–204.

    Article  PubMed  CAS  Google Scholar 

  12. A. Costela, I. García-Moreno, C. Gomez, R. Sastre, F. Amat-Guerri, M. Liras, F. López Arbeloa, J. Bañuelos Prieto and I. López, Arbeloa, Photophysical and lasing properties of new analogs of the boron-dipyrromethene laser dye PM567 in liquid solution, J. Phys. Chem. A, 2002 106, 7736–7742.

    Article  CAS  Google Scholar 

  13. F. López Arbeloa, J. Bañuelos Prieto, V. Martínez Martínez, T. Arbeloa López and I. López Arbeloa, Intramolecular charge transfer in pyrromethene laser dyes: photophysical behaviour of PM650, ChemPhysChem, 2004 5, 1762–1771.

    Article  PubMed  CAS  Google Scholar 

  14. J. Bañuelos Prieto, F. López Arbeloa, V. Martínez Martínez, T. Arbeloa López, F. Amat-Guerri, M. Liras and I. López Arbeloa, Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms, Chem. Phys. Lett., 2004 385, 29–35.

    Article  CAS  Google Scholar 

  15. M. Baruah, W. Qin, N. Basarić, W. M. De Borggraeve and N. Boens, BODIPY-based hydroxyaryl derivatives as fluorescent pH probes, J. Org. Chem., 2005 70, 4152–4157.

    Article  CAS  PubMed  Google Scholar 

  16. W. Qin, M. Baruah, A. Stefan, M. Van der Auweraer and N. Boens, Photophysical properties of BODIPY-derived hydroxyaryl fluorescent pH probes in solution, ChemPhysChem, 2005 6, 2343–2351.

    Article  CAS  PubMed  Google Scholar 

  17. Z. Dost, S. Atilgan and E. U. Akkaya, Distyryl-boradiazaindacenes: facile synthesis of novel IR emitting fluorophores, Tetrahedron, 2006 62, 8484–8488.

    Article  CAS  Google Scholar 

  18. W. Qin, T. Rohand, M. Baruah, A. Stefan, M. Van der Auweraer, W. Dehaen and N. Boens, Solvent-dependent photophysical properties of borondipyrromethene dyes in solution, Chem. Phys. Lett., 2006 420, 562–568.

    Article  CAS  Google Scholar 

  19. Z. Li and R. Bittman, Synthesis and spectral properties of cholesterol- and FTY720-containing boron dipyrromethene dyes, J. Org. Chem., 2007 72, 8376–8382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. W. Qin, M. Baruah, M. Van der Auweraer, F. C. De Schryver and N. Boens, Photophysical properties of borondipyrromethene analogues in solution, J. Phys. Chem. A, 2005 109, 7371–7384.

    Article  CAS  PubMed  Google Scholar 

  21. W. Qin, T. Rohand, W. Dehaen, J. N. Clifford, K. Driessen, D. Beljonne, B. Van Averbeke, M. Van der Auweraer and N. Boens, Borondipyrromethene analogs with phenyl, styryl, and ethynylphenyl substituents: synthesis, photophysics, electrochemistry, and quantum-chemical calculations, J. Phys. Chem. A, 2007 111, 8588–8597.

    Article  CAS  PubMed  Google Scholar 

  22. T. Rohand, J. Lycoops, S. Smout, E. Braeken, M. Sliwa, M. Van der Auweraer, W. Dehaen, W. M. De Borggraeve and N. Boens, Photophysics of 3,5-diphenoxy substituted BODIPY dyes in solution, Photochem. Photobiol. Sci., 2007 6, 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Ekmekci, M. D. Yilmaz and E. U. Akkaya, A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions, Org. Lett., 2008 10, 461–464.

    Article  CAS  PubMed  Google Scholar 

  24. L. Li, J. Han, B. Nguyen and K. Burgess, Syntheses and spectral properties of functionalized, water-soluble BODIPY derivatives, J. Org. Chem., 2008 73, 1963–1970.

    Article  CAS  PubMed  Google Scholar 

  25. M. Baruah, W. Qin, C. Flors, J. Hofkens, R. A. L. Vallée, D. Beljonne, M. Van der Auweraer, W. M. De Borggraeve and N. Boens, Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution, J. Phys. Chem. A, 2006, 110, 5998–6009.

    Article  CAS  PubMed  Google Scholar 

  26. W. Qin, M. Baruah, M. Sliwa, M. Van der Auweraer, W. M. De Borggraeve, D. Beljonne, B. Van Averbeke and N. Boens, Ratiometric, fluorescent BODIPY dye with aza crown ether functionality: synthesis, solvatochromism, and metal ion complex formation, J. Phys. Chem. A, 2008, 112, 6104–6114.

    Article  CAS  PubMed  Google Scholar 

  27. W. Qin, M. Baruah, W. M. De Borggraeve and N. Boens, Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based in a borondipyrromethene-linked phenol, J. Photochem. Photobiol., A, 2006, 183, 190–197.

    Article  CAS  Google Scholar 

  28. Y. Ikawa, S. Moriyama and H. Furuta, Facile syntheses of BODIPY derivatives for fluorescent labeling of the 3′ and 5′ ends of RNAs, Anal. Biochem., 2008, 378, 166–170.

    Article  CAS  PubMed  Google Scholar 

  29. B. Valeur, Molecular Fluorescence. Principles and Applications, Wiley-VCH, Weinheim (Germany), 2002.

    Google Scholar 

  30. J. Catalán, Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium, J. Phys. Chem. B, 2009, 113, 5951–5960.

    Article  PubMed  CAS  Google Scholar 

  31. M. J. Kamlet and R. W. Taft, Solvatochromic comparison method. 1. β-Scale of solvent hydrogen-bond acceptor (HBA) basicities, J. Am. Chem. Soc., 1976 98, 377–383.

    Article  CAS  Google Scholar 

  32. R. W. Taft and M. J. Kamlet, Solvatochromic comparison method. 2. α-Scale of solvent hydrogen-bond donor (HBD) acidities, J. Am. Chem. Soc., 1976 98, 2886–2894.

    Article  CAS  Google Scholar 

  33. M. J. Kamlet, J. L. M. Abboud and R. W. Taft, Solvatochromic comparison method. 6. π* Scale of solvent polarities, J. Am. Chem. Soc., 1977 99, 6027–6038.

    Article  CAS  Google Scholar 

  34. J. Catalán, V. López, P. Pérez, R. Martin-Villamil and J. G. Rodriguez, Progress towards a generalized solvent polarity scale–The solvatochromism of 2-(dimethylamino)-7-nitrofluorene and its homomorph 2-fluoro-7-nitrofluorene, Liebigs Ann., 1995, 241–252.

    Google Scholar 

  35. J. Catalán, in Handbook of solvents, G. Wypych, Ed,. ChemTec Publishing, Toronto, 2001; pp 583–616.

  36. J. Catalán, C. Díaz, A generalized solvent acidity scale: The solvatochromism of o-tert-butylstilbazolium betaine dye and its homomorph o,o′-di-tert-butylstilbazolium betaine dye, Liebigs Ann./Recl., 1997, 1941–1949.

    Google Scholar 

  37. J. Catalán, C. Díaz, V. López, P. Pérez, J. L. G. de Paz and J. G. Rodriguez, A generalized solvent basicity scale: the solvatochromism of 5-nitroindoline and its homomorph 1-methyl-5-nitroindoline, Liebigs Ann., 1996, 1785–1794.

    Google Scholar 

  38. J. Catalán and H. Hopf, Empirical treatment of the inductive and dispersive components of solute–solvent interactions: the solvent polarizability (SP) scale, Eur. J. Org. Chem., 2004, 4694–4702.

    Google Scholar 

  39. Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 1993, 22, 409–416.

    Article  CAS  Google Scholar 

  40. D. Pevenage, D. Corens, W. Dehaen, M. Van der Auweraer, F. C. De Schryver, Influence of the N-substituent on the photophysical properties of oxacarbocyanines in solution, Bull. Soc. Chim. Belg, 1997, 106, 565–572.

    CAS  Google Scholar 

  41. E. Lippert, Dipolmoment und Elektronenstruktur von angeregten Molekülen, Z. Naturforsch., A: Phys. Sci., 1955, 10, 541–545.

    Article  Google Scholar 

  42. N. Mataga, Y. Kaifu and M. Koizumi, The solvent effect on fluorescence spectrum–change of solute–solvent interaction during the lifetime of excited solute molecule, Bull. Chem. Soc. Jpn., 1955 28, 690–691.

    Article  CAS  Google Scholar 

  43. N. Mataga, Y. Kaifu and M. Koizumi, Solvent effects upon fluorescence spectra and the dipole moments of excited molecules, Bull. Chem. Soc. Jpn., 1956 29, 465–470.

    Article  CAS  Google Scholar 

  44. M. J. van der Meer, H. Zhang, W. Rettig and M. Glasbeek, Femto- and picosecond fluorescence studies of solvation and non-radiative deactivation of ionic styryl dyes in liquid solution, Chem. Phys. Lett., 2000, 320, 673–680.

    Article  Google Scholar 

  45. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.

    Google Scholar 

  46. F. H. Allen, The Cambridge structural database: a quarter of a million crystal structures and rising, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380–388.

    Article  CAS  Google Scholar 

  47. J. Olmsted, Calorimetric determinations of absolute fluorescence quantum yields, J. Phys. Chem., 1979, 83, 2581–2584.

    Article  CAS  Google Scholar 

  48. D. V. O’Connor and D. Phillips, Time-correlated Single Photon Counting, Academic Press, New York, 1984.

    Google Scholar 

  49. M. vandeVen, M. Ameloot, B. Valeur and N. Boens, Pitfalls and their remedies in time-resolved fluorescence spectroscopy and microscopy, J. Fluoresc., 2005 15, 377–413.

    Article  CAS  PubMed  Google Scholar 

  50. N. Boens, W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J.-P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. Van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai and A. Miura, Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy, Anal. Chem., 2007 79, 2137–2149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. L. Crovetto, A. Orte, E. M. Talavera, J. M. Alvarez-Pez, M. Cotlet, J. Thielemans, F. C. De Schryver and N. Boens, Global compartmental analysis of the excited-state reaction between fluorescein and (±)-N-acetyl aspartic acid, J. Phys. Chem. B, 2004, 108, 6082–6092.

    Article  CAS  Google Scholar 

  52. M. Van den Zegel, N. Boens, D. Daems, F. C. De Schryver, Possibilities and limitations of the time-correlated single photon counting technique: a comparative study of correction methods for the wavelength dependence of the instrument response function, Chem. Phys., 1986, 101, 311–335.

    Article  Google Scholar 

  53. Oxford Diffraction, CrysAlis CCD and CrysAlis RED, Version 1.171.30, Oxford Diffraction Poland, Wrocław (Poland), 2003.

    Google Scholar 

  54. G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997.

    Google Scholar 

  55. G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Boens.

Additional information

Electronic supplementary information (ESI) available: UV–vis absorption and emission spectra of 2; solvatochromism; time-resolved fluorescence of 4–6; synthesis of 1 and 3. CCDC reference number 711447. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0pp00035c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filarowski, A., Kluba, M., Cieślik-Boczula, K. et al. Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochem Photobiol Sci 9, 996–1008 (2010). https://doi.org/10.1039/c0pp00035c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00035c

Navigation