Skip to main content
Log in

The pH-dependent photochemistry of anthraquinone-2-sulfonate

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemistry of anthraquinone-2-sulfonate (AQ2S) was studied as a function of pH, combining laser flash photolysis and steady-state irradiation experiments, with the additional help of a computational study of energy levels. Two out of the three transient species produced upon irradiation of AQ2S can be involved into the degradation of dissolved molecules, and also AQ2S in its ground state is degraded. The reactive transients are less stable but often more reactive under acidic conditions, which modulates the pH trend of the photodegradation of the adopted organic substrates (furfuryl alcohol, benzene, nitrobenzene). The ability of the excited states of irradiated AQ2S to simulate the reactivity of singlet oxygen upon degradation of furfuryl alcohol, and that of the hydroxyl radical by producing phenol from benzene, can have important consequences. Furfuryl alcohol and benzene are widely adopted probe molecules for the respective quantification of singlet oxygen and the hydroxyl radical in many systems, among which are natural waters under irradiation. This study shows that the interference of AQ2S on singlet oxygen determination would be higher in acidic or basic than in ~neutral conditions, while in the case of the hydroxyl radical the interference would increase with pH. Processes analogous to those studied could account for the interference of coloured dissolved organic matter on the quantification of singlet oxygen, observed in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Handbook of Environmental Chemistry, ed. P. Boule, D. W. Bahnemann and P. K. J. Robertson, vol. 2M (Environmental Photochemistry, Part II), Springer, Berlin, 2005

    Google Scholar 

  2. M. W. Lam, S. A. Mabury, Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters, Aquat. Sci., 2005, 67, 177–188.

    Article  CAS  Google Scholar 

  3. A. Paul, S. Hackbarth, R. D. Vogt, B. Roder, B.K. Burnison, C. E. W. Steinberg, Photogeneration of singlet oxygen by humic substances: comparison of humic substances of aquatic and terrestrial origin, Photochem. Photobiol. Sci., 2004, 3, 273–280.

    Article  CAS  Google Scholar 

  4. S. Canonica, U. Laubscher, Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants, Photochem. Photobiol. Sci., 2008, 7, 547–551.

    Article  CAS  Google Scholar 

  5. Q. T. Liu, R. I. Cumming, A. D. Sharpe, Photo-induced environmental depletion processes of beta-blockers in river water, Photochem. Photobiol. Sci., 2009, 8, 768–777.

    Article  CAS  Google Scholar 

  6. D. Vione, J. Feitosa-Felizzola, C. Minero, S. Chiron, Phototransformation of selected human-used macrolides in surface waters: Kinetics, model predictions and degradation pathways, Water Res., 2009, 43, 1959–1967.

    Article  CAS  Google Scholar 

  7. D. Vione, V. Maurino, C. Minero, M. E. Carlotti, S. Chiron, S. Barbati, Modelling the occurrence and reactivity of the carbonate radical in surface freshwater, C. R. Chim., 2009, 12, 865–871.

    Article  CAS  Google Scholar 

  8. D. Vione, S. Khanra, S. Cucu Man, P. R. Maddigapu, R. Das, C. Arsene, R. I. Olariu, V. Maurino, C. Minero, Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the OH scavengers bicarbonate and carbonate, Water Res., 2009, 43, 4718–4728.

    Article  CAS  Google Scholar 

  9. S. Canonica, T. Kohn, M. Mac, F. J. Real, J. Wirz, U. Von Gunten, Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds, Environ. Sci. Technol., 2005, 39, 9182–9188.

    Article  CAS  Google Scholar 

  10. S. Canonica, B. Hellrung, P. Müller, J. Wirz, Aqueous oxidation of phenylurea herbicides by triplet aromatic ketones, Environ. Sci. Technol., 2006, 40, 6636–6641.

    Article  CAS  Google Scholar 

  11. T. Del Giacco, L. Latterini, F. Elisei, Photophysical and photochemical properties of 1,2,4-trihydroxy-9,10-anthraquinone adsorbed on inorganic oxides, Photochem. Photobiol. Sci., 2003, 2, 681–687.

    Article  Google Scholar 

  12. H. Gorner, Photoreactions of p-benzo, p-naphtho and p-anthraquinones with ascorbic acid, Photochem. Photobiol. Sci., 2004, 3, 933–938.

    Article  Google Scholar 

  13. V. Latour, T. Pigot, M. Simon, H. Cardy, S. Lacombe, Photooxidation of di-n-butylsulfide by various electron transfer sensitizers in oxygenated acetonitrile, Photochem. Photobiol. Sci., 2005, 4, 221–229.

    Article  CAS  Google Scholar 

  14. H. Gorner, Photoinduced oxygen uptake for 9,10-anthraquinone in air-saturated aqueous acetonitrile in the presence of formate, alcohols, ascorbic acid or amines, Photochem. Photobiol. Sci., 2006, 5, 1052–1058.

    Article  Google Scholar 

  15. M. Jang, S. R. McDow, Benz[a]anthracene photodegradation in the presence of known organic constituents of atmospheric aerosols, Environ. Sci. Technol., 1995, 29, 2654–2660.

    Article  CAS  Google Scholar 

  16. M. Jang, S. R. McDow, Products of benz[a]anthracene photodegradation in the presence of known organic constituents of atmospheric aerosols, Environ. Sci. Technol., 1997, 31, 1046–1053.

    Article  CAS  Google Scholar 

  17. I. Loeff, A. Treinin, H. Linschitz, Photochemistry of 9,10-anthraquinone-2-sulfonate in solution. 1. Intermediates and mechanism, J. Phys. Chem., 1983, 87, 2536–2544.

    Article  CAS  Google Scholar 

  18. A. E. Alegría, A. Ferrer, G. Santiago, E. Sepúlveda, W. Flores, Photochemistry of water-soluble quinones. Production of the hydroxyl radical, singlet oxygen and the superoxide ion, J. Photochem. Photobiol. A: Chem., 1999, 127, 57–65.

    Article  Google Scholar 

  19. V. Maurino, D. Borghesi, D. Vione, C. Minero, Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate, Photochem. Photobiol. Sci., 2008, 7, 321–327.

    Article  CAS  Google Scholar 

  20. D. Vione, M. Ponzo, D. Bagnus, V. Maurino, C. Minero and M. E. Carlotti, Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution, Environ. Chem. Lett., in press. 10.1007/s10311-008-0197-3.

  21. F. Al Housari, S. Chiron, D. Vione, S. Barbati, Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes, Photochem. Photobiol. Sci., 2010, 9, 78–86.

    Article  Google Scholar 

  22. S. Halladja, A. Ter Halle, J. P. Aguer, A. Boulkamh, C. Richard, Inhibition of humic substances mediates photooxigenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states, Environ. Sci. Technol., 2007, 41, 6066–6073.

    Article  CAS  Google Scholar 

  23. D. Vione, D. Bagnus, V. Maurino, C. Minero, Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water, Environ. Chem. Lett., in press. 10.1007/s10311-009-0208-z.

  24. D. Vione, V. Lauri, C. Minero, V. Maurino, M. Malandrino, M. E. Carlotti, R. I. Olariu, C. Arsene, Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight, Aquat. Sci., 2009, 71, 34–45.

    Article  CAS  Google Scholar 

  25. J. B. Foresman, and A. Frisch, 1996, Exploring Chemistry with Electron Structure Methods: a guide to using Gaussian, Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  26. I. G. Csizmadia, and R. Daudel, 1981, Computational Theoretical Organic Chemistry, Reidel, Dordrecth.

    Book  Google Scholar 

  27. H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 1982, 3, 214–218.

    Article  CAS  Google Scholar 

  28. H. B. Schlegel, An efficient algorithm for calculating ab initio energy gradients using s, p Cartesian Gaussians, J. Chem. Phys., 1982, 77, 3676–3681.

    Article  CAS  Google Scholar 

  29. H. B. Schlegel, J. S. Binkley, J. A. Pople, First and second derivatives of two electron integrals over Cartesian Gaussians using Rys polynomials, J. Chem. Phys., 1984, 80, 1976–1981.

    Article  CAS  Google Scholar 

  30. J. A. Pople, P. M. W. Gill, B. G. Johnson, Kohn-Sham density-functional theory within a finite basis set, Chem. Phys. Lett., 1992, 199, 557–560.

    Article  CAS  Google Scholar 

  31. R. G. Parr, and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, NY, 1989

    Google Scholar 

  32. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  33. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, 72, 650–654.

    Article  CAS  Google Scholar 

  34. A. D. McLean, G. S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second, row atoms, Z = 11-18, J. Chem. Phys., 1980, 72, 5639–5648.

    Article  CAS  Google Scholar 

  35. J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations, J. Phys. Chem., 1996, 100, 16098–16104.

    Article  CAS  Google Scholar 

  36. M. J. T. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, L. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 03, revision B.05, 2003

    Google Scholar 

  37. A. E. Martell, and R. M. Smith, Critical Stability Constants, Plenum Press, NY, 1974

    Google Scholar 

  38. F. Wilkinson, J. Brummer, Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular oxygen in solution, J. Phys. Chem. Ref. Data, 1981, 10, 809–1000.

    Article  CAS  Google Scholar 

  39. B. A. Southworth, B. M. Voelker, Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid, Environ. Sci. Technol., 2003, 37, 1130–1136.

    Article  CAS  Google Scholar 

  40. S. P. Sun, H. Q. Guo, Q. Ke, J. H. Sun, S. H. Shi, M. L. Zhang, Q. Zhou, Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process, Environ. Eng. Sci., 2009, 26, 753–759.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davide Vione or Marcello Brigante.

Additional information

Electronic supplementary information (ESI) available: Fig. ESI1-ESI11. See DOI: 10.1039/b9pp00103d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddigapu, P.R., Bedini, A., Minero, C. et al. The pH-dependent photochemistry of anthraquinone-2-sulfonate. Photochem Photobiol Sci 9, 323–330 (2010). https://doi.org/10.1039/b9pp00103d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00103d

Navigation