Skip to main content
Log in

Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na)2)3]Cl2

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Methods for measuring O2 within living cells that rely on luminescent probes are hampered by several factors: local conditions of hydrophobicity, pH, ionic composition, dielectric constant, and photobleaching by free radical species. Use of a polymer-embedded luminophore should minimize these problems. Here we use a Ru(ii) coordination complex embedded within 45 nm hydrodynamic diameter nanoparticles, and demonstrate that both phosphorescence intensity and lifetimes are O2-sensitive, both in aqueous suspensions and intracellularly (e.g. 4.06 versus 1.55 microseconds under anaerobic or aerobic conditions, respectively). Electroporation is necessary for incorporation of the nanoparticles into yeasts: it is more effective with the fission yeast, Schizosaccharomyces pombe, than for the budding yeast, Saccharomyces cerevisiae. However, electroporation was not required for particle uptake into a cultured human cell-line (mammary adenosarcoma MCF-7), although the intracellular distribution of the probe is more general to intracellular compartments when electroporation is employed. These procedures did not compromise vitality of cells over periods of 6 h, as judged by retention of structural characteristics evident in Nomarski interference or confocal microscopy images. Spatial resolution of intracellular structures defined by nanoparticle phosphorescence intensity imaging indicates potential usefulness of the application of lifetime imaging techniques for mapping of intracellular O2 distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P., Rich, Nature 2003 421 583

    Article  CAS  PubMed  Google Scholar 

  2. B. Chance and G. R. WilliamsJ. Biol. Chem. 1955 217 429–438

    Article  CAS  PubMed  Google Scholar 

  3. D. F. Wilson, M. Erecinska, C. Drown and I. A. Silver Arch. Biochem. Biophys. 1979 195 484–493

    Google Scholar 

  4. D. P. Jones and H. S. Mason J. Biol. Chem. 1978 253 4874–4880

    Article  CAS  PubMed  Google Scholar 

  5. D. Lloyd, H. Mellor and J. L. Williams Biochem. J. 1983 214 47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E. R. Gnaigner, G. Steinlechner-Maran, T. Mendez, T. Eberl and R. Margreiter J. Bioenerg. Biomembr. 1995 27 583–596

    Article  Google Scholar 

  7. D. Lloyd, in Bioinstrumentation Research, Developments and Applications, ed. D. L. Wise, Butterworths, Boston, MA, 1990, pp. 301-316

  8. R. Springett and H. M. Swartz Antioxid. Redox Signaling 2007 9 1295–1301

    Article  CAS  Google Scholar 

  9. H. M. Swartz and R. B. Clarkson Phys. Med. Biol. 1998 43 1957–1975

    Article  CAS  PubMed  Google Scholar 

  10. J. Knopp and G. Weber J. Biol. Chem. 1967 242 1353–1359

    Article  CAS  PubMed  Google Scholar 

  11. W. M. Vaughan and G. Weber Biochemistry 1970 9 464–473

    Article  CAS  PubMed  Google Scholar 

  12. J. A. Knopp and I. S. Longmuir Biochim. Biophys. Acta, Gen. Subj. 1972 279 393–397

    Article  CAS  Google Scholar 

  13. D. H. Benson, J. A. Knopp and I. S. Longmuir Biochim. Biophys. Acta, Bioenerg. 1980 591 187–197

    Article  CAS  Google Scholar 

  14. B. A. DeGraff and J. N. Demas, in Reviews in Fluorescence, ed. C. Geddes and J. R. Lakowicz, Springer Science, New York, vol. 2, 2005, pp. 125-151

  15. A. J. Amoroso, M. P. Coogan, J. E. Dunne, V. Fernández-Moreira, J. B. Hess, A. J. Hayes, D. Lloyd, C. Millet, S. J. A. Pope and C. Williams Chem. Commun. 2007 3066–3068

    Google Scholar 

  16. A. J. Amoroso, R. J. Arthur, M. P. Coogan, J. B. Court, V. Fernández-Moreira, A. J. Hayes, D. Lloyd, C. Millet and S. J. A. Pope New J. Chem. 2008 32 1097–1102

    Article  CAS  Google Scholar 

  17. K. K. Lo, M. Louie, K. Sze and J. Lau Inorg. Chem. 2008 47 602–611

    Article  CAS  PubMed  Google Scholar 

  18. K. K. Lo, T. K.-M. Lee, J. S.-Y. Lo, W.-L. Poon and S.-H. Cheng Inorg. Chem. 2008 47 200–208

    Article  CAS  PubMed  Google Scholar 

  19. Mengxiao Yu, Q. Zhao, L. Shi, F. Li, Z. Zhou and H. Yang Chem. Commun. 2008 2115–2117

    Google Scholar 

  20. R. J. Watts, and G. A. Crosby J. Am. Chem. Soc. 1971 93 3184–3188

    Article  Google Scholar 

  21. J. R. Bacon, and J. N. Demas Anal. Chem. 1987 59 2780–2785

    Article  CAS  Google Scholar 

  22. G. Orellana and D. Garcia-Fresnadillo, in Optical Sensors: Industrial, Environmental and Diagnostic Applications, Springer Science, Berlin and Heidelberg, vol. 1, 2004, pp. 309-357

    Google Scholar 

  23. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson J. Biol. Chem. 1987 262 3476–3482

    Article  Google Scholar 

  24. W Zhong, P. Urayama, and M. A. Mycek J. Phys. D: Appl. Phys. 2003 36 1689–1695

    Article  CAS  Google Scholar 

  25. H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman Anal. Chem. 1999 71 4831–4836

    Article  CAS  PubMed  Google Scholar 

  26. Y.-E. Lee-Koo, Y. Cao, R. Kopelman, S. M. Koo, M. G. Brasuel, and M. A. Philbert Anal. Chem. 2004 76 2498–2505

    Article  CAS  Google Scholar 

  27. S. M. Buck, Y.-E. L. Koo, E. Park, H. Xu, M. A. Philbert, M. A. Brasuel, and R. Kopelman Curr. Opin. Chem. Biol. 2004 8 540–546

    Article  CAS  PubMed  Google Scholar 

  28. M. Vanderkooi, W. W. Wright, and M. Erecinska Biochemistry 1990 29 5332–5338

    Article  CAS  PubMed  Google Scholar 

  29. S. A. Vinogradov, L. W. I. W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson Biophys. J. 1996 70 1609–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. G. Mik, T. Johannes, C. Zuurbier, A. Heinen, J. H. Howben-Weerts, G. M. Balestra, J. Stap, J. F. Beek, and C. Ince Biophys. J. 2008 95 3977–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon Anal. Chem. 1991 63 337–342

    Article  CAS  Google Scholar 

  32. H. D. Soule, J. Vazquez, A. Long, S. Albert, and M. Brennan J. Natl. Cancer Inst. 1973 51 1409–1416

    Article  CAS  PubMed  Google Scholar 

  33. A. K. Poulsen, L. Arleth, K. Almdal and A. M. Scharff-Poulsen J. Colloid Interface Sci. 2007 306 143–153

    Article  CAS  PubMed  Google Scholar 

  34. A. K. Poulsen, A. M. Scharff-Poulsen, and L. F. Olsen Anal. Biochem. 2007 366 29–36

    Article  CAS  PubMed  Google Scholar 

  35. D., Lloyd, Adv. Appl. Microbiol. 2002 51 155–183

    Article  CAS  PubMed  Google Scholar 

  36. H. Degn, and J. S. Lundsgaard J. Biochem. Biophys. Methods 1980 3 233–242

    Article  CAS  PubMed  Google Scholar 

  37. F. N. Castellano, and J. R. Lakowicz Photochem. Photobiol. 1998 67 179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Bradley, L. Alexander, K. Duncan, M. Cennaoui, A. C. Jones and R. M. Sanchez-Martin Bioorg. Med. Chem. Lett. 2008 18 313–317

    Article  CAS  PubMed  Google Scholar 

  39. D. M. Owen, P. M. Lanigan, C. Dunsby, I. Munro, D. Grant, M. A. A. Neil, P. M. W. French, and A. I. Magee Biophys. J. 2006 90 L80–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling Curr. Opin. Biotechnol. 2009 20 28–36

    Article  CAS  PubMed  Google Scholar 

  41. F. Manjon, D. Garcia-Fresnadillo, and G. Orellana Photochem. Photobiol. Sci. 2009 8 926–932

    Article  CAS  PubMed  Google Scholar 

  42. V. K. Ramshesh, and J. J. Lemasters J. Biomed. Opt. 2008 13 6 64001

    Article  CAS  Google Scholar 

  43. D. Lloyd, K. L. Thomas, J. Tamman, and A. J. Williams J. Microbiol. Methods 2002 48 289–302

    Article  CAS  PubMed  Google Scholar 

  44. D. Lloyd, and D. B. Murray BioEssays 2007 29 465–473

    Article  CAS  PubMed  Google Scholar 

  45. M. A. Aon, M. R. Roussel, S. Cortassa, B. O’Rourke, D. B. Murray, M. Beckmann, and D. Lloyd PLoS One 2008 3 e3624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. K. M. Lemar, M. A. Aon, S. Cortassa, B. O’Rourke, C. T. Muller, and D. Lloyd Yeast 2007 24 695–706

    Article  CAS  PubMed  Google Scholar 

  47. B., Chance, Methods Enzymol. 2004 385 361–370

    Article  CAS  PubMed  Google Scholar 

  48. M. P., Murphy, Biochem. J. 2009 417 1–13

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lloyd.

Additional information

To the memory of Gregorio Weber (1916–1997), who made seminal advances in fluorescence techniques and taught one of us (DL) at the Biochemistry Department, University of Sheffield, 1958-1961. See http://www.cf.ac.uk/biosi/staffinfo/lloyd/weber/index.html

Electronic supplementary information (ESI) available: Data fits for lifetime decay measurements. See DOI: 10.1039/b9pp00071b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coogan, M.P., Court, J.B., Gray, V.L. et al. Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na)2)3]Cl2. Photochem Photobiol Sci 9, 103–109 (2010). https://doi.org/10.1039/b9pp00071b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00071b

Navigation