Skip to main content
Log in

Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We describe a novel method to measure rotational diffusion of large biomolecules in solution based on fluorescence correlation on the nanosecond time scale. In contrast to conventional fluorescence anisotropy measurements, a correlation-based method will also work if the rotational diffusion time is much longer than the fluorescence decay time. Thus, the method is suited to study the rotational diffusion of macromolecules having rotational diffusion times of dozens to hundreds of nanoseconds, which is considerably larger than the fluorescence lifetime of most commercially available dyes or auto-fluorescent proteins. A pulsed interleaved excitation scheme with crossed excitation polarization maximizes the time-dependent amplitude of the measured correlation curve as caused by rotational diffusion. Using the determined rotational diffusion coefficient, precise values of the hydrodynamic radius can be obtained. The method is exemplified on sizing a set of common globular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Investigations on the Theory of the Brownian Movement, Dover, New York, 1985.

    Google Scholar 

  2. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor and J. Enderlein, Two-Focus Fluorescence Correlation Spectroscopy: A New Tool for Accurate and Absolute Diffusion Measurements, ChemPhysChem, 2007, 8, 433–443.

    Article  CAS  Google Scholar 

  3. P. Debye, Polar Molecules, The Chemical Catalogue Company, New York, 1929, pp. 77–108.

    Google Scholar 

  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 291–320.

    Book  Google Scholar 

  5. M. Ehrenberg and R. Rigler, Rotational brownian motion and fluorescence intensity fluctuations, Chem. Phys., 1974, 4, 390–401.

    Article  CAS  Google Scholar 

  6. S. R. Aragón and R. Pecora, Fluorescence correlation spectroscopy and Brownian rotational diffusion, Biopolymers, 1975, 14, 119–138.

    Article  Google Scholar 

  7. P. Kask, P. Piksarv, Ü. Mets, M. Pooga and E. Lippmaa, Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B, Eur. Biophys. J., 1987, 14, 257–261.

    Article  CAS  Google Scholar 

  8. J. M. Tsay, S. Dose and S. Weiss, Rotational and Translational Diffusion of Peptide-Coated CdSe/CdS/ZnS Nanorods Studied by Fluorescence Correlation Spectroscopy, J. Am. Chem. Soc., 2006, 128, 1639–1647.

    Article  CAS  Google Scholar 

  9. S. Felekyan, R. Kühnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker and C. A. M. Seidel, Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection, Rev. Sci. Instrum., 2005, 76, 083104.

    Article  Google Scholar 

  10. M. Tabak, D. de Sousa Neto and C. E. G. Salmon, On the Interaction of Bovine Serum Albumin (BSA) with Cethyltrimethyl Ammonium Chloride Surfactant: Electron Paramagnetic Resonance (EPR) Study, Braz. J. Phys., 2006, 36, 83–89.

    Article  CAS  Google Scholar 

  11. P. Kask, P. Piksarv, Ü. Mets, Fluorescence correlation spectroscopy in the nanosecond time range: Photon antibunching in dye fluorescence, Eur. Biophys. J., 1985, 12, 163–166.

    Article  CAS  Google Scholar 

  12. W. P. Ambrose, P. M. Goodwin, J. Enderlein, D. J. Semin, J. C. Martin and R. A. Keller, Fluorescence photon antibunching from single molecules on a surface, Chem. Phys. Lett., 1997, 269, 365–370.

    Article  CAS  Google Scholar 

  13. P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Müllen, F. C. de Schryver and M. Sauer, Antibunching in the Emission of a Single Tetrachromophoric Dendritic System, J. Am. Chem. Soc., 2002, 124, 14310–14311.

    Article  CAS  Google Scholar 

  14. K. D. Weston, M. Dyck, P. Tinnefeld, C. Müller, D. P. Herten and M. Sauer, Measuring the Number of Independent Emitters in Single-Molecule Fluorescence Images and Trajectories Using Coincident Photons, Anal. Chem., 2002, 74, 5342–5349.

    Article  CAS  Google Scholar 

  15. J. Sýkora, K. Kaiser, I. Gregor, W. Bönigk, G. Schmalzing and J. Enderlein, Exploring fluorescence antibunching in solution for determining the stoichiometry of molecular complexes, Anal. Chem., 2007, 79, 4040–4049.

    Article  Google Scholar 

  16. B. J. Berne and R. Pecora, Dynamic Light Scattering, Dover, Mineola/New York, 2000.

    Google Scholar 

  17. R. Feynman, Feynman’s lectures on physics, Addison-Wesley, Reading, MA, USA, 1964, chapter 18. 4.

    Google Scholar 

  18. W. J. Thompson, Angular momentum, John Wiley & Sons, New York, NY, USA, 1994.

    Book  Google Scholar 

  19. H. F. Jones, Groups, representations and physics, IOP Publishing, Bristol and Philadelphia, 1998, chapter 4.

    Book  Google Scholar 

  20. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, chapter 7.

    Google Scholar 

  21. D. Zwillinger, Handbook of differential equations, Academic Press, San Diego, CA, USA, 3rd edition, 1990, chapter 96.

    Google Scholar 

  22. J. Enderlein, I. Gregor, D. Patra, T. Dertinger and B. Kaupp, Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration, ChemPhysChem, 2005, 6, 2324–36.

    Article  CAS  Google Scholar 

  23. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  24. K. Bahlmann and S. W. Hell, Electric field depolarization in high aperture focusing with emphasis on annular apertures, J. Microsc., 2000, 200, 59–67.

    Article  Google Scholar 

  25. K. Bahlmann and S. W. Hell, Depolarization by high aperture focusing, Appl. Phys. Lett., 2000, 77, 612–614.

    Article  CAS  Google Scholar 

  26. F. Perrin, Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales, J. Phys. Radium Ser. VII, 1934, 5, 497–511.

    Article  CAS  Google Scholar 

  27. F. Perrin, Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences. Translation et diffusion de molecules ellipsoidales, J. Phys. Radium Ser. VII, 1936, 7, 1–11.

    Article  CAS  Google Scholar 

  28. S. H. Koenig, Brownian Motion of an Ellipsoid. A Correction to Perrin’s Results, Biopolymers, 1975, 14, 2421–2423.

    Article  CAS  Google Scholar 

  29. B. K. Müller, E. Zaychikov, C. Bräuchle and D. Lamb, Cross Talk Free Fluorescence Cross Correlation Spectroscopy in Live Cells, Biophys. J., 2005, 89, 3508–3522.

    Article  Google Scholar 

  30. M. Wahl, I. Gregor, M. Patting and J. Enderlein, Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting, Opt. Express, 2003, 11, 3583–3591.

    Article  Google Scholar 

  31. F. L. G. Flecha and V. Levi, Determination of the Molecular Size of BSA by Fluorescence Anisotropy, Biochem. Mol. Biol. Educ., 2003, 31, 319–322.

    Article  CAS  Google Scholar 

  32. Z. Murtaza, P. Herman and J. R. Lakowicz, Synthesis and spectral characterization of a long-lifetime osmium (II) metal-ligand complex: a conjugatable red dye for applications in biophysics, Biophys. Chem., 1999, 80, 143–151.

    Article  CAS  Google Scholar 

  33. M. L. Ferrer, R. Duchowicz, B. Carrasco, J. G. de la Torre, A. U. Acuña, The Conformation of Serum Albumin in Solution: A Combined Phosphorescence Depolarization-Hydrodynamic Modeling Study, Biophys. J., 2001, 80, 2422–2430.

    Article  CAS  Google Scholar 

  34. T. Croguennec, A. Renault, S. Beaufils, J. Dubois and S. Pezennec, Interfacial properties of heat-treated ovalbumin, J. Colloid Interface Sci., 2007, 315 2, 627–36.

    Article  CAS  Google Scholar 

  35. J. Garcia de la Torre, B. Carrasco and S. E. Harding, Calculation of hydrodynamic properties of globular proteins from their atomic level structure, Biophys. J., 2000, 78, 719–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Enderlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loman, A., Gregor, I., Stutz, C. et al. Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochem Photobiol Sci 9, 627–636 (2010). https://doi.org/10.1039/b9pp00029a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00029a

Navigation