Issue 37, 2009

Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials

Abstract

Highly ordered mesoporous SnO2 materials with residual silica species were successfully synthesized from a mesoporous silica template (SBA-15) via nano-replication and simple etching processes. A tin precursor, SnCl2·2H2O, was infiltrated spontaneously within the mesopores of the silica templates by melting the precursor at 353 K without using a solvent. After the heat-treatment of composite materials at 973 K under static air conditions, the controlled removal of silica templates using NaOH or HF solutions with different concentrations results in the successful preparation of mesoporous SnO2 materials, where the amounts of residual silica species are in the range 0.9–17.4 wt%. The residual silica species induce a nano-propping effect enabling the mesoporous SnO2 material (containing 6.0 wt% of silica species) to remain stable up to 973 K without any significant structural collapse. More importantly, the optimum amount of residual silica species (3.9–6.0 wt%) results in a dramatic reduction in capacity fading after prolonged charging–discharging cycles in Li-ion battery. The mesoporous SnO2 material with 3.9 wt% of silica species still exhibits a large capacity (about 600 mAh g−1) after the 30th cycle, which is probably because the residual silica species act as a physical barrier to suppress the aggregation of Sn clusters formed in the mesoporous SnO2 materials during the reversible lithium storage.

Graphical abstract: Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2009
Accepted
10 Jun 2009
First published
17 Jul 2009

J. Mater. Chem., 2009,19, 6727-6732

Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials

J. K. Shon, H. Kim, S. S. Kong, S. H. Hwang, T. H. Han, J. M. Kim, C. Pak, S. Doo and H. Chang, J. Mater. Chem., 2009, 19, 6727 DOI: 10.1039/B905743A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements