Skip to main content
Log in

Triplet-relaxation microscopy with bunched pulsed excitation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Obtaining high signal levels in fluorescence microscopy is usually spoiled by the concomitant population of the dark (triplet) state of the marker, which is often followed by photobleaching. Recently, we introduced the triplet relaxation (T-Rex) modality in fluorescence microscopy which led to a major increase in total signal and dye photostability. The idea behind T-Rex is to avoid the illumination of fluorophores in the triplet state, e.g. by using pulsed excitation with interpulse time distances that are long enough for the triplet state to relax between two pulses. While our previous implementation came at the expense of extended recording, here we investigate pulsed excitation patterns for T-Rex illumination implying shorter total recording times. In particular, we balance signal enhancement and imaging speed by exciting with bunches of quickly succeeding pulses that are separated by dark periods for triplet relaxation. Taking the green fluorescent protein and the organic dye Atto532 as examples, we observe the dependence of photobleaching and total fluorescence gain on the number of pulses within a bunch. Reaching almost T-Rex conditions this excitation scheme mimics fast scanning of the illumination beam and has the potential to improve a whole range of analytical tools that suffer from photobleaching and low signal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Y. Tsien, Imagining imaging’s future, Nat. Cell Biol., 2003, SS16–SS21.

    Google Scholar 

  2. J. B. Pawley, (ed.), Handbook of biological confocal microscopy, Springer, New York, 2nd edn., 2006.

    Book  Google Scholar 

  3. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling and S. W. Hell, Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11440–11445.

    Article  CAS  Google Scholar 

  4. G. Donnert, C. Eggeling and S. W. Hell, Major signal increase in flurorescence microscopy through dark-state relaxation, Nat. Meth., 2007, 4, 81–86.

    Article  CAS  Google Scholar 

  5. M. Kasha, Paths of molecular excitation, Radiat. Res., 1960, 2, 243–275.

    CAS  PubMed  Google Scholar 

  6. M. Anbar and E. Hart, The reactivity of aromatic compounds towards hydrated electrons, J. Am. Chem. Soc., 1964, 86, 5633–6537.

    Article  CAS  Google Scholar 

  7. E. V. Khoroshilova and D. N. Nikogosyan, Photochemistry of uridine on high intensity laser UV irradiation, J. Photochem. Photobiol. B, 1990, 5, 413–427.

    Article  CAS  Google Scholar 

  8. C. Eggeling, J. Widengren, R. Rigler and C. A. M. Seidel, Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis, Anal. Chem., 1998, 70, 2651–2659.

    Article  CAS  Google Scholar 

  9. W. W. Webb, K. S. Wells, D. R. Sandison, and J. Strickler, Criteria for quantitative dynamical confocal fluorescence imaging, in Optical Microscopy for Biology, ed. B. Herman, and K. Jacobson, Wiley, New York, 1990, pp. 73–108.

    Google Scholar 

  10. J.-A. Conchello and J. W. Lichtman, Optical sectioning microscopy, Nat. Meth., 2005, 2, 920–931.

    Article  CAS  Google Scholar 

  11. R. Y. Tsien, L. Ernst, and A. Waggoner, Fluorophores for Confocal Microscopy: Photophysics and Photochemistry, in Handbook of biological confocal microscopy, ed. J. B. Pawley, Springer, New York, 2006, pp. 338–352.

    Chapter  Google Scholar 

  12. R. T. Borlinghaus, High Speed Scanning Has the Potential to Increase Fluorescence Yield and to Reduce Photobleaching, Micr. Res. Tech., 2006, 69, 689–692.

    Article  CAS  Google Scholar 

  13. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling and S. W. Hell, Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Meth., 2008, 5, 943–945.

    Article  Google Scholar 

  14. C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, Photostabilities of fluorescent dyes for single-molecule spectroscopy: Mechanisms and experimental methods for estimating photobleaching in aqueous solution, in Applied fluorescence in chemistry, biology and medicine, ed. W. Rettig, B. Strehmel, M. Schrader, and H. Seifert, Springer, Berlin, 1999, pp. 193–240.

    Chapter  Google Scholar 

  15. J. Widengren, Ü. Mets and R. Rigler, Fluorescence correlation spectroscopy of triplet states in solution: A theoretical and experimental study, J. Phys. Chem., 1995, 99, 13368–13379.

    Article  CAS  Google Scholar 

  16. G. H. Patterson and D. W. Piston, Photobleaching in two-photon excitation microscopy, Biophys. J., 2000, 78, 2159–2162.

    Article  CAS  Google Scholar 

  17. P. S. Dittrich and P. Schwille, Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation, Appl. Phys. B, 2001, 73, 829–837.

    Article  CAS  Google Scholar 

  18. C. Eggeling, A. Volkmer and C. A. M. Seidel, Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy, ChemPhysChem, 2005, 6, 791–804.

    Article  CAS  Google Scholar 

  19. J. Widengren, A. Chmyrov, C. Eggeling, P.-A. Löfdahl and C. A. M. Seidel, Strategies to Improve Photostabilities in Ultrasensitive Fluorescence Spectroscopy, J. Phys. Chem. A, 2007, 111, 429–444.

    Article  CAS  Google Scholar 

  20. I. Gregor, D. Patra and J. Enderlein, Optical Saturation in Fluorescence Correlation Spectroscopy under Continuous-Wave and Pulsed Excitation, ChemPhysChem, 2004, 5, 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Eggeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnert, G., Eggeling, C. & Hell, S.W. Triplet-relaxation microscopy with bunched pulsed excitation. Photochem Photobiol Sci 8, 481–485 (2009). https://doi.org/10.1039/b903357m

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b903357m

Navigation