Skip to main content

Advertisement

Log in

Uptake pathways of anionic and cationic photosensitizers into bacteria

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effect of divalent cations (calcium and magnesium) and a permeabilizing agent (EDTA) on the uptake of a cationic photosensitizer (PS), methylene blue (MB), and two anionic PSs, rose bengal (RB) and indocyanine green (ICG), by Gram-positive Enterococcus faecalis and Gram-negative Actinobacillus actinomycetemcomitans was examined. The possible roles of multidrug efflux pumps and protein transporters in photosensitizer uptake were assessed in E. faecaliscells by studies using an efflux pumpinhibitor (verapamil) and trypsin treatment respectively. Divalent cations enhanced the uptake and photodynamic inactivation potential of both RB and ICG in E. faecalis and A. actinomycetemcomitans, while they decreased the uptake and bacterial killing by MB. Verapamil increased the uptake of RB (possibly due to efflux pump inhibition), whereas trypsin treatment resulted in significant decrease in RB and ICG uptake. The results suggested that the uptake of anionic PSs by bacterial cells may be mediated through a combination of electrostatic charge interaction and by protein transporters, while the uptake of cationic PSs, as previously reported, is mediated by electrostatic interactions and self promoted uptake pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Meisel and T. Kocher, Photodynamic therapy for periodontal diseases: state of the art., J. Photochem. Photobiol., B, 2005, 79, 159–70.

    Article  CAS  Google Scholar 

  2. N. Komerik and A. J. Macrobert, Photodynamic therapy as an alternative antimicrobial modality for oral infections., J. Environ. Pathol., Toxicol. Oncol., 2006, 25, 487–504.

    Article  Google Scholar 

  3. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one–photosensitizers, photochemistry and cellular localization., Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  4. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy., J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  5. M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours., J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  6. P. A. Lambert, Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria., Soc. Appl. Microbiol. Symp. Ser., 2002, 31, 46S–54S.

    Article  CAS  Google Scholar 

  7. L. Leive, The barrier function of the Gram-negative envelope., Ann. N. Y. Acad. Sci., 1974, 235, 109–129.

    Article  CAS  PubMed  Google Scholar 

  8. S. P. Denyer and J. Y. Maillard, Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria., J. Appl. Microbiol., 2002, 92, 35S–45S.

    Article  PubMed  Google Scholar 

  9. R. E. Hancock, Alterations in outer membrane permeability., Annu. Rev. Microbiol., 1984, 38, 237–64.

    Article  CAS  PubMed  Google Scholar 

  10. Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions., J. Photochem. Photobiol., B, 1992, 14, 262–2666.

    Article  CAS  Google Scholar 

  11. G. Bertoloni, F. Rossi, G. Valduga, G. Jori, J. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli., FEMS Microbiol. Lett., 1990, 71, 149–155.

    Article  CAS  Google Scholar 

  12. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood and T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria., J. Antimicrob. Chemother., 2002, 49, 941–951.

    Article  CAS  PubMed  Google Scholar 

  13. G. P. Tegos, M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad and M. R. Hamblin, Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation., Antimicrob. Agents Chemother., 2006, 50, 1402–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Inactivation of Gram-negative bacteria by photosensitized porphyrins., Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  Google Scholar 

  15. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli., Antimicrob. Agents Chemother., 2000, 44, 522–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. F. G. Riess, M. Elflein, M. Benk, B. Schiffler, R. Benz, N. Garton and I. Sutcliffe, The cell wall of the pathogenic bacterium Rhodococcus equi contains two channel-forming proteins with different properties., J. Bacteriol., 2003, 185, 2952–2960.

    Article  CAS  PubMed  Google Scholar 

  17. N. Costa-Riu, A. Burkovski, R. Kramer and R. Benz, PorA represents the major cell wall channel of the Gram-positive bacterium Corynebacterium glutamicum., J. Bacteriol., 2003, 185, 4779–4786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. A. Creagh, M. Gleeson, D. Travis, R. Grainger, T. E. McDermott and M. R. Butler, Is there a role for in vivo methylene blue staining in the prediction of bladder tumour recurrence?, Br. J. Urol., 1995, 75, 477–479.

    Article  CAS  PubMed  Google Scholar 

  19. I. Fox, G. Brooker, D. Heseltine, H. Essex and E. Wood, New dyes for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation., Am. J. Physiol., 1956, 187, 599.

    Google Scholar 

  20. C. Preiser, P. Lejeune, A. Roman, E. Carlier, D. Debacker, M. Leeman, R. J. Kahn and J. L. Vincent, Methylene-blue administration in septic shock - A clinical-trial., Crit. Care Med., 1995, 23, 259–264.

    Article  CAS  PubMed  Google Scholar 

  21. R. O. Wright, W. J. Lewander and A. D. Woolf, Methemoglobinemia: etiology, pharmacology, and clinical management., Ann. Emerg. Med., 1999, 34, 646–656.

    Article  CAS  PubMed  Google Scholar 

  22. M. J. Kelner, R. Bagnell, B. Hale and N. M. Alexander, Methylene-blue competes with paraquat for reduction by flavo-enzymes resulting in decreased superoxide production in the presence of heme-proteins., Arch. Biochem. Biophys., 1988, 262, 422–426.

    Article  CAS  PubMed  Google Scholar 

  23. K. J. Mellish, R. D. Cox, D. I. Vernon, J. Griffiths and S. B. Brown, In vitro photodynamic activity of a series of methylene blue analogues., Photochem. Photobiol., 2002, 75, 392–397.

    Article  CAS  PubMed  Google Scholar 

  24. D. Severino, H. C. Junqueira, M. Gugliotti, D. S. Gabrielli and M. S. Baptista, Influence of negatively charged interfaces on the ground and excited state properties of methylene blue., Photochem. Photobiol., 2003, 77, 459–468.

    Article  CAS  PubMed  Google Scholar 

  25. H. C. Junqueira, D. Severino, L. G. Dias, M. S. Gugliotti and M. S. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces., Phys. Chem. Chem. Phys., 2002, 4, 2320–2328.

    Article  CAS  Google Scholar 

  26. M. Wainwright and K. B. Crossley, Methylene blue - a therapeutic dye for all seasons?, J. Chemother., 2002, 14, 431–443.

    Article  CAS  PubMed  Google Scholar 

  27. M. N. Usacheva, M. C. Teichert, C. E. Sievert and M. A. Biel, Effect, of Ca+ on the photobactericidal efficacy of methylene blue and toluidine blue against Gram-negative bacteria and the dye affinity for lipopolysaccharides., Lasers Surg. Med., 2006, 38, 946–54.

    Article  PubMed  Google Scholar 

  28. S. A. Lambrechts, M. C. Aalders, D. H. Langeveld-Klerks, Y. Khayali and J. W. Lagerberg, Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins., Photochem. Photobiol., 2004, 79, 297–302.

    Article  CAS  PubMed  Google Scholar 

  29. R. E. Hancock, The bacterial outer membrane as a drug barrier., Trends Microbiol., 1997, 5, 37–42.

    Article  CAS  PubMed  Google Scholar 

  30. R. K. Rose, S. P. Matthews and R. C. Hall, Investigation of calcium-binding sites on the surfaces of selected Gram-positive oral organisms., Arch. Oral Biol., 1997, 42, 595–599.

    Article  CAS  PubMed  Google Scholar 

  31. S. George and A. Kishen, Can EDTA pretreatment protect E. faecalis from the antimicrobial effect of calcium hydroxide?, IADR, Brisbane, Australia, 2006, http://iadr.confex.com/iadr/2006Brisb/techproGram/abstract_82201.htm.

    Google Scholar 

  32. L. Leive, A nonspecific increase in permeability in Escherichia coli produced by EDTA., Proc. Natl. Acad. Sci. U. S. A., 1965, 53, 745–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Vaara, Agents that increase the permeability of the outer membrane., Microbiol. Rev., 1992, 56, 395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Bhatti, A. MacRobert, S. Meghji, B. Henderson and M. Wilson, A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization., Photochem. Photobiol., 1998, 683, 370–376.

    Article  CAS  PubMed  Google Scholar 

  35. G. P. Tegos and M. R. Hamblin, Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps., Antimicrob. Agents Chemother., 2006, 50, 196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. P. Tegos, K. Masago, F. Aziz, A. Higginbotham, F. R. Stermitz and M. R. Hamblin, Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation., Antimicrob. Agents Chemother., 2008, 52, 3202–3209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E. W. Lee, M. N. Huda, T. Kuroda, T. Mizushima and T. Tsuchiya, EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis., Antimicrob. Agents Chemother., 2003, 47, 3733–3738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. M. Jonas, B. E. Murray and G. M. Weinstock, Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis, Antimicrob. Agents Chemother., 2001, 45, 3574–3579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. H. Coconnier, T. R. Klaenhammer, S. Kerneis, M. F. Bernet and A. L. Servin, Protein-mediated adhesion of lactobacillus-acidophilus Bg2fo4 on human enterocyte and mucus-secreting cell-lines in culture., Appl. Environ. Microbiol., 1992, 58, 2034–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. S. Weiss and G. E. Schulz, Porin conformation in the absence of calcium - refined structure at 2 Angstrom resolution., J. Mol. Biol., 1993, 231, 817–824.

    Article  CAS  PubMed  Google Scholar 

  41. K. Skrivanova, J. Skorpikova, J. Svihalek, V. Mornstein and R. Janisch, Photochemical properties of a potential photosensitiser indocyanine green in vitro., J. Photochem. Photobiol., B, 2006, 85, 150–154.

    Article  CAS  Google Scholar 

  42. S. Fickweiler, R. M. Szeimies, W. Baumler, P. Steinbach, S. Karrer, A. E. Goetz, C. Abels, F. Hofstadter and M. Landthaler, Indocyanine green: intracellular uptake and phototherapeutic effects in vitro., J. Photochem. Photobiol., B, 1997, 38, 178–183.

    Article  CAS  Google Scholar 

  43. V. V. Tuchin, E. A. Genina and A. N. Bashkatov, A pilot study of ICG laser therapy of acne vulgaris: Photodynamic and photothermolysis treatment., Lasers Surg. Med., 2003, 33, 296–310.

    Article  PubMed  Google Scholar 

  44. S. George, A. Kishen and K. P. Song, The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis, J. Endod., 2005, 31, 867–872.

    Article  CAS  PubMed  Google Scholar 

  45. A. Kishen, S. George and R. Kumar, Enterococcus faecalis-mediated biomineralized biofilm formation on root canal dentine in vitro., J. Biomed. Mater. Res., Part A, 2006, 77a, 406–415.

    Article  CAS  Google Scholar 

  46. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications., Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, S., Hamblin, M.R. & Kishen, A. Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem Photobiol Sci 8, 788–795 (2009). https://doi.org/10.1039/b809624d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b809624d

Navigation