Skip to main content
Log in

Singlet molecular oxygen by direct excitation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Direct excitation at 1064 nm and detection of singlet molecular oxygen at 1270 nm is made possible by the availability of powerful YAG-lasers and sensitive NIR photomultipliers. Singlet oxygen was generated in condensed phase at 77 K by direct excitation at 1064 nm (without the use of sensitizers). Several luminescing species were observed by time resolved luminescence spectroscopy and luminescence lifetime measurements, including the single molecule 1Δg and 1Σg+ +states as well as luminescence from the [1Δg]2 simultaneous transition. As an application we propose a novel method for obtaining quantitative non-intrusive mapping of the 2-D oxygen concentrations and pressure at cryogenic temperatures, which is of importance in aircraft design for high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Mulliken, Interpretation of the atmospheric oxygen bands; electronic levels of the oxygen molecule Nature, 1928, 122, 505.

    Article  CAS  Google Scholar 

  2. R. S. Mulliken, Interpretation of band spectra. III. Electron, quantum numbers and states of molecules and their atoms Rev. Mod. Phys., 1932, 4, 1–86.

    Article  CAS  Google Scholar 

  3. C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  Google Scholar 

  4. G. W. Robinson, Intensity enhancement of forbidden electronic transitions by weak intermolecular interactions J. Chem. Phys., 1967, 46, 572–585.

    Article  CAS  Google Scholar 

  5. V. G. Krishna, Simultaneous and induced electronic transitions in oxygen. I. J. Chem. Phys., 1969, 50, 792–799.

    Article  CAS  Google Scholar 

  6. C. Long, D. R. Kearns, Selection-rules for intermolecular enhancement of spin forbidden transitions in molecular-oxygen J. Chem. Phys., 1973, 59, 5729–5736.

    Article  CAS  Google Scholar 

  7. P. R. Ogilby, Solvent effects on the radiative transitions of singlet oxygen Acc. Chem. Res., 1999, 32, 512–519.

    Article  CAS  Google Scholar 

  8. E. W. Ellis, H. O. Kneser, Kombinationsbeziehungen im Absorptionsspektrum des flüssigen Sauerstoffs Z. Phys., 1933, 86, 583–591.

    Article  CAS  Google Scholar 

  9. A. U. Khan, M. Kasha, Chemiluminescence arising from simultaneous transitions in pairs of singlet oxygen molecules J. Am. Chem. Soc., 1970, 92, 3293–3300.

    Article  CAS  Google Scholar 

  10. S. J. Arnold, E. A. Ogryzlo, H. Witzke, Some new emission bands of molecular oxygen J. Chem. Phys., 1964, 40, 1769–1770.

    Article  CAS  Google Scholar 

  11. Singlet Molecular Oxygen, ed. M. S. Chadha, Bhabha Atomic Research Centre, Bombay, India, 1975.

    Google Scholar 

  12. A. P. Schaap, Singlet Molecular Oxygen, Dowden, Hutchinson & Ross, Stroudsburg, PA, 1976.

    Google Scholar 

  13. A. Frimer, Singlet Oxygen, CRC Press, Boca Raton, FL, 1985.

    Google Scholar 

  14. R. W. Redmond, I. E. Kochevar, Symposium-in-print: singlet oxygen Photochem. Photobiol., 2006, 82, 1178–1186.

    Article  CAS  Google Scholar 

  15. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O21Δg) sensitization J. Photochem. Photobiol., A, 1994, 79, 11–17.

    Article  CAS  Google Scholar 

  16. I. Rosenthal, Phthalocyanines as photodynamic sensitizers Photochem. Photobiol., 1991, 53, 859–870.

    Article  CAS  Google Scholar 

  17. G. Khalil, A. Chang, M. Gouterman, J. B. Callis, L. R. Dalton, N. J. Turro, S. Jockusch, Oxygen pressure measurement using singlet oxygen emission Rev. Sci. Instrum., 2005, 76, 054101-1-054101-8.

  18. S. Jockusch, J. Sivaguru, N. J. Turro, V. Ramamurthy, Direct measurement of the singlet oxygen lifetime in zeolites by near-IR phosphorescence Photochem. Photobiol. Sci., 2005, 4, 403–405.

    Article  CAS  Google Scholar 

  19. L. Skuja, B. Güttler, Detection of interstitial oxygen molecules in SiO2 glass by direct photoexcitation of the infrared luminescence of singlet O2Phys. Rev. Lett., 1996, 77, 2093–2096.

    Article  CAS  Google Scholar 

  20. A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, R. V. Ambartzumian, Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength Chem. Phys. Lett., 2006, 430, 260–264.

    Article  CAS  Google Scholar 

  21. E. Wild, H. Klingshirn, M. Maier, Relaxation of the 1Δg state in pure liquid oxygen and in liquid mixtures of 16O218O2J. Photochem., 1984, 25, 131–143.

    Article  CAS  Google Scholar 

  22. D. V. Kazakov, R. Schmidt, On the effect of 1,4-diazabicyclo[2.2.2]octane on the singlet-oxygen dimol emission: Photosensitized generation of (1O2)2J. Phys. Chem. A, 2007, 111, 4274–4279.

    Article  CAS  Google Scholar 

  23. F. Noxon, Observation of the b-a transition in O2Can. J. Phys., 1961, 39, 1110–1119.

    Article  CAS  Google Scholar 

  24. T. Keszthelyi, D. Weldon, T. N. Anderson, T. D. Poulssen, K. V. Mikkelsen, P. R. Ogilby, Radiative transitions of singlet oxygen: New tools, new techniques and new interpretations Photochem. Photobiol., 1999, 70, 531–539.

    Article  CAS  Google Scholar 

  25. R. Schmidt, M. Bodesheim, Time-resolved measurement of O2(3Σg+) in solution - Phosphorescence from an upper excited-state J. Phys. Chem., 1994, 98, 2874–2876.

    Article  CAS  Google Scholar 

  26. K. Asai, H. Kanda, C. T. Cunningham, R. Erausquin and J. P. Sullivan, Surface pressure measurement in a cryogenic wind tunnel by using luminescent coating, ICIASF ‘97 Record, Pacific Grove, CA, 1997, pp. 105–114.

    Google Scholar 

  27. A. N. Watkins, W. K. Goad, C. J. Obara, D. R. Sprinkle, R. L. Campbell, M. B. Carter, O. C. Pendergraft, J. H. Bell, J. L. Ingram, D. M. Oglesby, P. J. Underwood, L. R. Humber, Flow visualization at cryogenic conditions using a modified pressure sensitive paint approach AIAA Paper AIAA, 2005 2005–456.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal E. Khalil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jockusch, S., Turro, N.J., Thompson, E.K. et al. Singlet molecular oxygen by direct excitation. Photochem Photobiol Sci 7, 235–239 (2008). https://doi.org/10.1039/b714286b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b714286b

Navigation