Skip to main content
Log in

The effect of folic acid on porphyrin synthesis in tumors and normal skin of mice treated with 5-aminolevulinic acid or methyl 5-aminolevulinate

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid (ALA) or its derivative methyl 5-aminolevulinate (MAL) combined with folic acid was applied in nude mice bearing human colon adenocarcinoma. The aim of the study is to see whether folic acid may increase biosynthesis of porphyrins in tumor tissue after systemic or topical administration of ALA or MAL. The production of porphyrins was determined by spectrofluorometric measurements with an optical fibre probe. It was found that the porphyrin production after i.p injection of 200 mg kg−1 ALA or MAL was significantly increased by i.p injection of 100 mg kg−1 folic acid. However, in the case of topically applied 20% ALA, folic acid had no effect. In the case of topically applied 20% MAL, folic acid (i.p or topically applied) reduced the porphyrin synthesis. This might be used for the protection of normal skin against photosensitization. The effects of folic acid were similar in tumors and normal skin. Two mechanisms may explain the results: enhancement of the efficiency of the rate-limiting enzyme porphobilinogen deaminase by folic acid or interference of folic acid with the transport of ALA and MAL to and into the cells synthesizing porphyrins in the tissues. The present data seem to favour the latter mechanism. Folic acid may have a role as an adjuvant in photodynamic therapy with systemically administered ALA and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Moore, K. E. McColl, C. Rimington and S. A. Goldbert, in Disorders of porphyrin metabolism, ed. M. M. Wintrobe, Plenum Press, New York, 1987, pp. 73–116.

  2. N. Gordon, The acute porphyries, Brain Dev., 1999, 21, 373–377.

    Article  CAS  Google Scholar 

  3. F. J. DiMario Jr., J. J. Quinn, E. L. Zalneraitis, D. A. Whiteman and B. S. Russman, Folate deficiency and acute intermittent porphyria in a 12-year-old boy, Neurology, 1993, 43, 1438–1439.

    Article  Google Scholar 

  4. E. A. Wider de Xifra, A. M. Batlle, A. M. Stella, S. Malamud, Acute intermittent porphyria - another approach to therapy, Int. J. Biochem., 1980, 12, 819–822.

    Article  CAS  Google Scholar 

  5. M. L. Kotler, A. A. Juknat, S. R. CorreaGarcia, F. Princ and A. M. Batlle, In vitro sulfamerazine inhibition of rat blood uroporphyrinogen I synthetase and its reversal by folic acid, Med. Sci. Res., 1988, 16, 983–984.

    CAS  Google Scholar 

  6. M. Kohashi, R. P. Clement, J. Tse and W. N. Piper, Rat hepatic uroporphyrinogen III co-synthase. Purification and evidence for a bound folate coenzyme participating in the biosynthesis of uroporphyrinogen III, Biochem. J., 1984, 220, 755–765.

    Article  CAS  Google Scholar 

  7. G. O. Noriega, A. A. Juknat and A. M. Batlle, Non-essential activation of rat liver porphobilinogen-deaminase by folic acid, Z. Naturforsch., C, 1992, 47, 416–419.

    Article  CAS  Google Scholar 

  8. S. Sassa and A. Kappas, Genetic, metabolic, and biochemical aspects of the porphyrias, Adv. Human Genet., 1981, 11, 121–231.

    CAS  Google Scholar 

  9. M. M. Qualls and Thompson D. H. Chloroaluminum, phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposomes: intracellular localization and synergistic phototoxicity, Int. J. Cancer, 2001, 93, 384–392.

    Article  CAS  Google Scholar 

  10. R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette, F. Guillemin, J. F. Muller and M. Barberi-Heyob, Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorg. Med. Chem., 2005, 13, 2799–2808.

    Article  CAS  Google Scholar 

  11. S. D. Weitman, R. H. Lark, L. R. Coney, D. W. Fort, V. Frasca, V. R. J. Zurawskir and B. A. Kamen, Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues, Cancer Res., 1992, 52, 3396–3401.

    CAS  PubMed  Google Scholar 

  12. R. H. Jindra, A. Kubin, H. Kolbabek and G. Alth, W. Dobrowsky, Ambulant photodynamic therapy of superficial malignomas with 5-ALA in combination with folic acid and use of noncoherent light, Drugs Exp. Clin. Res., 1999, 25, 37–41.

    CAS  PubMed  Google Scholar 

  13. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky and J. M. Nesland, 5-Aminolevulinic acid–based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–2308.

    Article  CAS  Google Scholar 

  14. P. Babilas, S. Karrer, A. Sidoroff, M. Landthaler and R. M. Szeimies, Photodynamic therapy in dermatology - an update, Photodermatol. Photoimmunol. Photomed., 2005, 21, 142–149.

    Article  CAS  Google Scholar 

  15. J. Moan, L. W. Ma, A. Juzeniene, Q. Peng and V. Iani, Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer, 2003, 103, 132–135.

    Article  CAS  Google Scholar 

  16. L. W. Ma, J. Moan, Q. Peng and V. Iani, Production of protoporphyrin IX induced by 5 aminolevulinic acid in transplanted human colon adenocarcinoma of nude mice can be increased by ultrasound, Int. J. Cancer, 1998, 78, 464–469.

    Article  CAS  Google Scholar 

  17. Q. Peng, T. Warloe, J. Moan, H. Heyerdahl, J. M. Nesland and K. E. Giercksky, Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma, Photochem. Photobiol., 1995, 62, 906–913.

    Article  CAS  Google Scholar 

  18. A. Bugaj, V. Ian, A. Juzeniene, P. Juzenas, L. W. Ma and J. Moan, The effect of dimethyl sulfoxide, 1-[2-(decylthio-)ethyl-]azacyclopentane-2-one and labrafac on porphyrin formation in mouse skin during topical application of methyl 5-aminolevulinate; a fluorescence and extraction study, Photodiagn. Photodyn. Ther., 2006, 3, 27–33.

    Article  CAS  Google Scholar 

  19. O. A. Gederaas, A. Holroyd, S. B. Brown, D. Vernon, J. Moan and K. Berg, 5-Aminolaevulinic acid methyl ester transport on amino acid carriers in a human colon adenocarcinoma cell line, Photochem. Photobiol., 2001, 73, 164–169.

    Article  CAS  Google Scholar 

  20. E. Rud, O. Gederaas, A. Hogset and K. Berg, 5-Aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters, Photochem. Photobiol., 2000, 71, 640–647.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiWei Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Steindal, A.E., Juzeniene, A. et al. The effect of folic acid on porphyrin synthesis in tumors and normal skin of mice treated with 5-aminolevulinic acid or methyl 5-aminolevulinate. Photochem Photobiol Sci 5, 755–759 (2006). https://doi.org/10.1039/b603828j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b603828j

Navigation