Skip to main content
Log in

Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The aquatic liverwort Jungermannia exsertifolia subsp. cordifolia was cultivated for 15 d under controlled conditions to study the single and combined effects of cadmium and enhanced ultraviolet (UV) radiation. Both cadmium and UV radiation caused chlorophyll degradation and a decrease in the maximum quantum yield of photosystem II (PSII), together with an increase in the mechanisms of non-photochemical dissipation of energy (increase in the xanthophyll index). Cadmium was more stressing than UV radiation, since the metal also influenced photosynthesis globally and caused a decrease in net photosynthetic rates, in the effective quantum yield of photosynthetic energy conversion of PSII, and in the maximal apparent electron transport rate through PSII. Ultraviolet radiation increased the level of trans-p-coumaroylmalic acid and cadmium increased trans-phaselic and feruloylmalic acids. The increase in these compounds was probably related to both a more efficient absorption of harmful UV radiation and an enhanced protection against oxidative stress. DNA damage was specifically caused by UV-B radiation, but was intensified under the presence of cadmium, probably because the metal impairs the DNA enzymatic repair mechanisms. Ultraviolet radiation and cadmium seemed to operate additively on some physiological processes, while other responses were probably due to either factor alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sanità di Toppi and R. Gabbrielli, Response to cadmium in higher plants, Environ. Exp. Bot., 1999, 41, 105–130.

    Article  Google Scholar 

  2. P. L. Gratao, A. Polle, P. J. Lea and R. A. Azevedo, Making the life of heavy metal-stressed plants a little easier, Funct. Plant Biol., 2005, 32, 481–494.

    Article  CAS  PubMed  Google Scholar 

  3. R. L. McKenzie, L. O. Björn, A. Bais and M. Ilyasd, Changes in biologically active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2003, 2, 5–15.

    Article  CAS  PubMed  Google Scholar 

  4. M. M. Caldwell, Solar UV irradiation and the growth and development of higher plants, in Photophysiology: current topics in photobiology and photochemistry, ed. A. C. Giese, Academic Press, New York, 1971, vol. 6, pp. 131–177.

    Article  CAS  Google Scholar 

  5. S. D. Flint and M. M. Caldwell, A biological spectral weighting function for ozone depletion research with higher plants, Physiol. Plant., 2003a, 117, 137–144.

    Article  CAS  Google Scholar 

  6. S. D. Flint and M. M. Caldwell, Field testing of UV biological spectral weighting functions for higher plants, Physiol. Plant., 2003b, 117, 145–153.

    Article  CAS  Google Scholar 

  7. S. D. Flint, R. J. Ryel and M. M. Caldwell, Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies, Agric. Forest Meteorol., 2003, 120, 177–189.

    Article  Google Scholar 

  8. S. D. Flint, P. S. Searles and M. M. Caldwell, Field testing of biological spectral weighting functions for induction of UV-absorbing compounds in higher plants, Photochem. Photobiol., 2004, 79, 399–403.

    Article  CAS  PubMed  Google Scholar 

  9. T. A. Day and P. J. Neale, Effects of UV-B radiation on terrestrial and aquatic primary producers, Ann. Rev. Ecol. Syst., 2002, 33, 371–396.

    Article  Google Scholar 

  10. M. A. K. Jansen, V. Gaba and B. M. Greenberg, Higher plants and UV-B radiation: balancing damage, repair and acclimation, Trends Plant Sci., 1998, 3, 131–135.

    Article  Google Scholar 

  11. P. S. Searles, S. D. Flint and M. M. Caldwell, A meta-analysis of plant field studies simulating stratospheric ozone depletion, Oecologia, 2001, 127, 1–10.

    Article  PubMed  Google Scholar 

  12. L. A. Franklin and R. M. Forster, The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology, Eur. J. Phycol., 1997, 32, 207–232.

    Google Scholar 

  13. R. Sommaruga and F. Garcia-Pichel, UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake, Arch. Hydrobiol., 1999, 144, 255–269.

    Article  CAS  Google Scholar 

  14. D. P. Häder, H. D. Kumar, R. C. Smith and R. C. Worrest, Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors, Photochem. Photobiol. Sci., 2003, 2, 39–50.

    Article  PubMed  Google Scholar 

  15. V. G. Kakani, K. R. Reddy, D. Zhao and K. Sailaja, Field crop responses to ultraviolet-B radiation: a review, Agric. Forest Meteorol., 2003, 120, 191–218.

    Article  Google Scholar 

  16. E. H. Larsson, J. F. Bornman and H. Asp, Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus, J. Exp. Bot., 1998, 49, 1031–1039.

    Article  CAS  Google Scholar 

  17. E. H. Larsson, J. F. Bornman and H. Asp, Physiological effects of cadmium and UV-B radiation in phytochelatin-deficient Arabidopsis thaliana, cad1-3, Aust. J. Plant Physiol., 2001, 28, 505–512.

    CAS  Google Scholar 

  18. U. C. Shukla, P. C. Joshi and P. Kakkar, Synergistic action of ultraviolet-B radiation and cadmium on the growth of wheat seedlings, Ecotoxicol. Environ. Safety, 2002, 51, 90–96.

    Article  CAS  PubMed  Google Scholar 

  19. U. C. Shukla and P. Kakkar, Effect of dual stress of ultraviolet-B radiation and cadmium on nutrient uptake of wheat seedlings, Commun. Soil Sci. Plant Anal., 2002, 33, 1737–1749.

    Article  CAS  Google Scholar 

  20. N. Atri and L. C. Rai, Differential responses of three cyanobacteria to UV-B and Cd, J. Microbiol. Biotechnol., 2003, 13, 544–551.

    CAS  Google Scholar 

  21. P. Bhargava, A. K. Srivastava, S. Urmil and L. C. Rai, Phytochelatin plays a role in UV-B tolerance in N-2-fixing cyanobacterium Anabaena doliolum, J. Plant Physiol., 2005, 162, 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  22. S. M. Prasad and M. Zeeshan, UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum, Biol. Plant., 2005, 49, 229–236.

    Article  CAS  Google Scholar 

  23. S. M. Prasad, R. Dwivedi, M. Zeeshan and R. Singh, UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp., Acta Physiol. Plant., 2004, 26, 423–430.

    Article  CAS  Google Scholar 

  24. W. B. Bowden, D. Arscott, D. Pappathanasi, J. Finlay, J. M. Glime, J. LaCroix, C. L. Liao, A. Hershey, T. Lampella, B. Peterson, W. Wollheim, K. Slavik, B. Shelley, M. B. Chesterton, J. A. Lachance, R. M. LeBlanc, A. Steinman and A. Suren, Roles of bryophytes in stream ecosystems, J. North Am. Benthol. Soc., 1999, 18, 151–184.

    Article  Google Scholar 

  25. C. Ah-Peng and C. Rausch de Traubenberg, Bryophytes aquatiques bioaccumulateurs de polluants et indicateurs écophysiologiques de stress: synthèse bibliographique, Cryptog. Bryol., 2004, 25, 205–248.

    Google Scholar 

  26. C. Gehrke, Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem, Ecology, 1999, 80, 1844–1851.

    Article  Google Scholar 

  27. S. Huttunen, T. Taipale, N. M. Lappalainen, E. Kubin, K. Lakkala and J. Kaurola, Environmental specimen bank samples of Pleurozium schreberi and Hylocomium splendens as indicators of the radiation environment at the surface, Environ. Pollut., 2005, 133, 315–326.

    Article  CAS  PubMed  Google Scholar 

  28. J. Martínez-Abaigar, E. Núñez-Olivera, N. Beaucourt, M. A. García-Álvaro, R. Tomás and M. Arróniz, Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation, J. Bryol., 2003, 25, 17–30.

    Article  Google Scholar 

  29. K. K. Newsham, D. A. Hodgson, A. W. A. Murray, H. J. Peat and R. I. Lewis Smith, Response of two Antarctic bryophytes to stratospheric ozone depletion, Global Change Biol., 2002, 8, 972–983.

    Article  Google Scholar 

  30. S. A. Robinson, J. D. Turnbull and C. E. Lovelock, Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici, Global Change Biol., 2005, 11, 476–489.

    Article  Google Scholar 

  31. P. S. Searles, S. D. Flint, S. B. Díaz, M. C. Rousseaux, C. L. Ballaré and M. M. Caldwell, Solar ultraviolet-B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina, Global Change Biol., 1999, 5, 225–234.

    Article  Google Scholar 

  32. Z. Takács, Z. Csintalan, L. Sass, E. Laitat, I. Vass and Z. Tuba, UV-B tolerance of bryophyte species with different degrees of desiccation tolerance, J. Photochem. Photobiol., B, 1999, 48, 210–215.

    Article  Google Scholar 

  33. M. Arróniz-Crespo, Efectos de la radiación ultravioleta-B sobre briófitos acuáticos de ríos de montaña, PhD Thesis, Universidad de La Rioja, Logroño, Spain, 2005.

    Google Scholar 

  34. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363–3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L. O. Björn and A. H. Teramura, Simulation of daylight ultraviolet radiation and effects of ozone depletion, in Environmental UV Photobiology, ed. A. R. Young, Plenum Press, New York, 1993, pp. 41–71.

    Chapter  Google Scholar 

  36. J. Martínez-Abaigar and E. Núñez-Olivera, Ecophysiology of photosynthetic pigments in aquatic bryophytes, in Bryology for the Twenty-first Century, ed. J. W. Bates, N. W. Ashton and J. G. Duckett, Maney Publishing and the British Bryological Society, Leeds, 1998, pp. 277–292.

    Google Scholar 

  37. J. De Las Rivas, A. Abadía and J. Abadía, A new reversed phase-HPLC method resolving all major higher plant photosynthetic pigments, Plant Physiol., 1989, 91, 190–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. U. Schreiber, W. Bilger and C. Neubauer, Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis, in Ecophysiology of photosynthesis, ed. E. D. Schulze and M. M. Caldwell, Springer, Berlin, 1995, pp. 49–75.

    Chapter  Google Scholar 

  39. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis, Blackwell Science, Oxford, 1997, p. 375.

    Google Scholar 

  40. R. P. Sinha, M. Dautz and D. P. Häder, A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae, Acta Protozool., 2001, 40, 187–195.

    CAS  Google Scholar 

  41. L. Croisetiere, L. Hare, A. Tessier and S. Duchesne, Modeling cadmium exchange by an aquatic moss (Fontinalis dalecarlica), Environ. Sci. Technol., 2005, 39, 3056–3060.

    Article  CAS  PubMed  Google Scholar 

  42. M. D. Vázquez, J. López and A. Carballeira, Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophytes, Ecotoxicol. Environ. Safety Environ. Res. B, 1999, 44, 12–24.

    Article  Google Scholar 

  43. C. Bleuel, D. Wesenberg, K. Sutter, J. Miersch, B. Braha, F. Barlocher and G. Krauss, The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals - 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species, Sci. Total Environ., 2005, 345, 13–21.

    Article  CAS  PubMed  Google Scholar 

  44. I. Bruns, K. Sutter, S. Menge, D. Neumann and G. J. Krauss, Cadmium lets increase the glutathione pool in bryophytes, J. Plant Physiol., 2001, 158, 79–89.

    Article  CAS  Google Scholar 

  45. K. Maxwell and G. N. Johnson, Chlorophyll fluorescence—a practical guide, J. Exp. Bot., 2000, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  46. M. K. Joshi and P. Mohanty, Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants, in Chlorophyll a fluorescence: A signature of photosynthesis, ed. G. C. Papageorgiou and Govindjee, Springer, Dordrecht, 2004, pp. 637–661.

    Chapter  Google Scholar 

  47. C. Ihle and H. Laasch, Inhibition of photosystem II by UV-B radiation and the conditions for recovery in the liverwort Conocephalum conicum Dum., Bot. Acta, 1996, 109, 199–205.

    Article  CAS  Google Scholar 

  48. P. Montiel, A. Smith and D. Keiller, Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic, Polar Res., 1999, 18, 229–235.

    Article  Google Scholar 

  49. E. Núñez-Olivera, J. Martínez-Abaigar, R. Tomás, N. Beaucourt and M. Arróniz-Crespo, Influence of temperature on the effects of artificially enhanced UV-B radiation on aquatic bryophytes under laboratory conditions, Photosynthetica, 2004, 42, 201–212.

    Article  Google Scholar 

  50. B. R. Jordan, The effects of ultraviolet-B radiation on plants: a molecular perspective, Adv. Bot. Res., 1996, 22, 97–162.

    Article  CAS  Google Scholar 

  51. R. Popovic, D. Dewez and P. Juneau, Applications of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants, in Practical applications of chlorophyll fluorescence in plant biology, ed. J. R. DeEll and P. M. A. Toivonen, Kluwer, Boston, 2003, pp. 151–184.

    Chapter  Google Scholar 

  52. M. Bertrand, I. Poirier, Photosynthetic organisms and excess of metals, Photosynthetica, 2005, 43, 345–353.

    Article  CAS  Google Scholar 

  53. B. Demmig-Adams and W. W. Adams, III, Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species, Planta, 1996, 198, 460–470.

    Article  CAS  Google Scholar 

  54. E. Skorzynska-Polit, M. Drazkiewicz, D. Wianowska, W. Maksymiec, A. L. Dawidowicz and A. Tukiendorf, The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus, Acta Physiol. Plant., 2004, 26, 247–254.

    Article  CAS  Google Scholar 

  55. A. Schützendübel and A. Polle, Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., 2002, 53, 1351–1365.

    PubMed  Google Scholar 

  56. R. Niemi, P. J. Martikainen, J. Silvola, E. Sonninen, A. Wulff and T. Holopainen, Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity, New Phytol., 2002a, 156, 509–515.

    Article  PubMed  Google Scholar 

  57. R. Niemi, P. J. Martikainen, J. Silvola, A. Wulff, S. Turtola and T. Holopainen, Elevated UV-B radiation alters fluxes of methane and carbon dioxide in peatland microcosms, Global Change Biol., 2002b, 8, 361–371.

    Article  Google Scholar 

  58. D. Lud, T. C. W. Moerdijk, W. H. Van de Poll, A. G. J. Buma and A. H. L. Huiskes, DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation, Plant, Cell Environ., 2002, 25, 1579–1589.

    Article  CAS  Google Scholar 

  59. D. Lud, M. Schlensog, B. Schroeter and A. H. L. Huiskes, The influence of UV-B radiation on light-dependent photosynthetic performance in Sanionia uncinata (Hedw.) Loeske in Antarctica, Polar Biol., 2003, 26, 225–232.

    Article  Google Scholar 

  60. A. Gröniger, C. Hallier and D. P. Häder, Influence of UV radiation and visible light on Porphyra umbilicalis: photoinhibition and MAA concentration, J. Appl. Phycol., 1999, 11, 437–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez-Abaigar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, S., Núñez-Olivera, E., Martínez-Abaigar, J. et al. Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Photochem Photobiol Sci 5, 760–769 (2006). https://doi.org/10.1039/b601105e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b601105e

Navigation