Skip to main content
Log in

Impact of iron-complex (Fe(iii)–NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this research work, the photochemical impact of Fe(iii)–nitrilotriacetic acid complex (FeNTA) on the fate of an organic pollutant (4-chlorophenol (4-CP)) was investigated in natural waters. The quantum yields of the photodecomposition of the FeNTA complex and of Fe(ii) formation, by an intra-molecular photoredox process (the first stage of the reaction) are high. This photoredox reaction represents the first step of the process leading to 4-CP disappearance. Whereas oxygen does not affect FeNTA photodegradation, 4-CP depletion requires the presence of oxygen. The radical species HO˙ and CO3˙ responsible of the degradation were identified by ESR spectroscopy under irradiation. Two different wavelength-dependent mechanisms of 4-chlorophenol degradation are proposed. It clearly appears that under solar irradiation, iron organic complexes like FeNTA can play a significant role on the fate of the organic compounds present in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Powell and S. L. Heath, Polyiron(iii) oxyhydroxide clusters: The role of iron(iii) hydrolysis and mineralization in Nature, Comment Inorg. Chem., 1994, 15, 255.

    Article  CAS  Google Scholar 

  2. P. M. Proulx-Curry and N. D. Chasteen, Molecular aspects of iron uptake and storage in ferritin, Coord. Chem. Rev., 1995, 144, 347.

    Article  CAS  Google Scholar 

  3. E. M. Thurman, in Organic Geochemistry of Natural Waters, ed. M. Nijhoff and Dr. W. Junk, Dordrecht, 1985, pp. 88–92 and pp. 295–299.

  4. E. M. Perdue and E. T. Gjessing, Organic Acids in Aquatic Ecosystems, ed. Wiley, New York, 1990.

    Google Scholar 

  5. A. W. Adamson, W. L. Waltz, E. Zinato, D. W. Watts, P. D. Fleischauer and R. D. Lindholm, Photochemistry of transition-metal coordination compounds, Chem. Rev., 1968, 68, 541–543.

    Article  CAS  Google Scholar 

  6. J. Hoigné, Y. Zuo and L. Nowell, Photochemical reactions in atmospheric waters: role of dissolved iron species, in Aquatic and surface photochemistry, ed. G. Helz, R. G. Zepp and D. G. Crosby, Lewis, Chelsea, MI, 1993, pp. 75–84.

    Google Scholar 

  7. B. C. Faust and R. G. Zepp, Photochemistry of aqueous iron(iii)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface phochemistry, Environ. Sci. Technol., 1993, 27, 2517–2522.

    Article  CAS  Google Scholar 

  8. N. Deng, F. Wu, F. Luo and Z. Liu, Photodegradation of dyes in aqueous solution containing Fe(iii)-oxalato complex, Chemosphere, 1997a, 35, 2697–2706.

    Article  CAS  Google Scholar 

  9. N. Deng, F. Wu, F. Luo, Z. Liu and M. Xiao, Ferric citrate induced photodegradation of dyes in aqueous solutions, Chemosphere, 1998, 36, 3101–3112.

    Article  CAS  Google Scholar 

  10. F. Wu, N. Deng and Y. Zuo, Discoloration of dye solutions induced by solar photolysis of ferrioxalate in aqueous solutions, Chemosphere, 1999, 39, 2079–2085.

    Article  CAS  Google Scholar 

  11. N. Deng, T. Fang and S. Tian, Photodegradation of dyes in aqueous solutions containing Fe(iii)-hydroxy complex I, Photodegradation kinetics, Chemosphere, 1996, 35, 547–557.

    Google Scholar 

  12. N. Deng, T. Fang, S. Tian and T. Fang, Photodegradation of dyes in aqueous solution containing Fe(iii)-hydroxy complex II, Solar photodegradation kinetics, Chemosphere, 1997b, 34, 547–557.

    Google Scholar 

  13. D. W. Gunz and M. R. Hoffmann, Atmospheric chemistry of peroxides a review, Atmos. Environ., 1990, 24 7, 1601–1633.

    Article  Google Scholar 

  14. H. Sakugawa, I. R. Kaplan, W. Tsai and Y. Cohen, Atmospheric hydrogen peroxide. Does it share a role with ozone in degrading air quality?, Environ. Sci. Technol., 1990, 24 10, 1452–1462.

    Article  CAS  Google Scholar 

  15. V. Balzani and V. Carassiti, in Photochemistry of coordination compound, Academic Press, London, 1970, ch. 10, pp. 145–192.

    Google Scholar 

  16. B. H. Bielski, D. E. Cabelli, R. Arudi and A. B. Ross, Reactivity of HO2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data, 1985, 14 4, 1041.

    Article  CAS  Google Scholar 

  17. J. De Laat and H. Gallard, Catalytic decomposition of hydrogen peroxide by Fe(iii) in homogeneous aqueous solution: mechanism and kinetic modelling, Environ. Sci. Technol., 1999, 33, 2726.

    Article  Google Scholar 

  18. C. G. Hatchard and C. A. Parker, A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer., Proc. R. Soc. London, Ser. A, 1956, 235, 518.

    Article  CAS  Google Scholar 

  19. H. B. Abrahamson, A. B. Rezvani and J. G. Brushmiller, Photochemical and spectroscopic studies of complexes, of iron(iii) with citric acid and other carboxylic acids, Inorg. Chim. Acta, 1994, 226, 117.

    Article  CAS  Google Scholar 

  20. R. Aplin, A. J. Feitz and T. D. Waite, Effect of Fe(iii)-ligand properties on effectiveness of modified photo-Fenton processes, Water Sci. Technol., 2001, 44 5, 23.

    Article  CAS  Google Scholar 

  21. K. F. Guenter, S. Hilger and S. Canonica, Determination of the reaction quantum yield for the photochemical degradation of Fe(iii)-EDTA: implications for the environmental fate of EDTA in surface waters, Environ. Sci. Technol., 1995, 29, 1008.

    Article  Google Scholar 

  22. A. C. Alder, H. Siegrist, W. Gujer and W. Giger, Behaviour of NTA and EDTA in biological wastewater treatment, Water Res., 1990, 24, 733.

    Article  CAS  Google Scholar 

  23. S. L. Andrianirinaharivelo, J.-F. Pilichowski and M. Bolte, Nitrilotriacetic acid transformation photo-induced by complexation with iron(iii) in aqueous solution, J. Transition Met. Chem., 1993, 18, 37–41.

    Article  CAS  Google Scholar 

  24. K. Oudjehani and P. Boule, Photoreactivity of 4-chlorophenol in aqueous solution, J. Photochem. Photobiol., A, 1992, 68, 363–373.

    Article  CAS  Google Scholar 

  25. P. Mazellier, M. Sarakha and M. Bolte, Primary mechanism for the iron(iii) photoinduced degradation of 4-chlorophenol in aqueous solution, New J. Chem., 1999, 23, 133–135.

    Article  CAS  Google Scholar 

  26. J. G. Calvert and J. N. Pitts, in Photochemistry, Wiley, New York, 1966, p. 783.

    Google Scholar 

  27. H. Bader, V. Sturzenegger, J. Hoigné, Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD), Water Res., 1988, 22 No. 9, 1109–1115.

    Article  CAS  Google Scholar 

  28. P. Mazellier, G. Mailhot and M. Bolte, Photochemical behavior of the iron(iii)/2,6-dimethylphenol system, New J. Chem., 1997, 21, 389.

    CAS  Google Scholar 

  29. A. E. Martell and R. M. Smith, Critical stability constants, Plenum, New York, 1974, vol. 1.

  30. L. L. Perissinotti, M. A. Brusa and M. A. Grela, Yield of carboxyl anion radical in photocatalytic degradation of formate over TiO2 particles, Langmuir, 2001, 17, 8422–8427.

    Article  CAS  Google Scholar 

  31. P. Neta, R. E. Huie and A. B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 1988, 17 3, 1027.

    Article  CAS  Google Scholar 

  32. A. Rossi, G. Guyot and P. Boule, Photochemical behavior of 1,4-benzoquinone in dilute aqueous solution, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers., 1986, 303 13, 1179.

    CAS  Google Scholar 

  33. G. Mailhot, S. L. Andrianirinaharivelo and M. Bolte, Photochemical transformation of iminodiacetic acid induced by complexation with copper(ii) in aqueous solution, J. Photochem. Photobiol., A, 1995, 87, 31–36.

    Article  CAS  Google Scholar 

  34. S. Gordon, E. J. Hart and J. K. Thomas, The ultraviolet spectra of transients produced in the radiolysis of aqueous solutions, J. Phys. Chem., 1964, 68, 1262–1264.

    Article  CAS  Google Scholar 

  35. P. Mazellier, M. Sarakha and M. Bolte, Primary mechanism for the iron(iii) photoinduced degradation of 4-chlorophenol in aqueous solution, New J. Chem., 1999, 23, 133.

    Article  CAS  Google Scholar 

  36. O. Augusto, M. G. Bonini, A. M. Amanso, E. Linares, C. C. X. Santos, S. L. De Menezes, Nitrogen dioxine and carbonate radical anion: two emerging radicals in biology, Free Radical Biol. Med., 2002, 32 9, 841.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Mailhot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abida, O., Mailhot, G., Litter, M. et al. Impact of iron-complex (Fe(iii)–NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution. Photochem Photobiol Sci 5, 395–402 (2006). https://doi.org/10.1039/b518211e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b518211e

Navigation