Skip to main content
Log in

Decarboxylation is a significant reaction pathway for photolabile calcium chelators and related compounds

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photolysis of amino acids that bear a 2-nitrobenzyl protecting group on the amino nitrogen involves a normal 2-nitrobenzyl-type photocleavage to release the amino acid but also a second mechanistic pathway, that appears to be initiated by single electron transfer from the amino group to the excited state of the nitroaromatic. The end result of this pathway is photodecarboxylation. Quantitative experiments suggest that this latter pathway can contribute between 10 and 80% of the total reaction flux in different compounds. It appears that the aminium radical, the first product of the single electron transfer, can be intercepted by certain amino acids, resulting in a transfer of decarboxylation to this “sacrificial” amino acid. Possible implications for precise details of calcium release from photolabile derivatives of EDTA and EGTA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caged Compounds, in Methods in Enzymology, ed. G. Marriott, Academic Press, New York, 1998, vol. 291

  2. A. P. Pelliccioli, J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications, Photochem. Photobiol. Sci., 2002, 1, 441–458

    Article  PubMed  Google Scholar 

  3. J. E. T. Corrie and D. R. Trentham, Caged nucleotides and neurotransmitters, in Bioorganic Photochemistry, ed. H. Morrison, Wiley, New York, 1993, vol. 2, pp. 205–243

    Google Scholar 

  4. Dynamic Studies in Biology, ed. M. Goeldner and R. S. Givens, Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  5. J. E. T. Corrie, A. Barth, V. R. N. Munasinghe, D. R. Trentham and M. C. Hutter, Photolytic cleavage of 1-(2-nitrophenyl)ethyl ethers involves two parallel pathways and product release is rate limited by decomposition of a common hemiacetal intermediate, J. Am. Chem. Soc., 2003, 125, 8546–8554.

    Article  CAS  PubMed  Google Scholar 

  6. Y. V. Il’ichev, M. A. Schwörer and J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP, J. Am. Chem. Soc., 2004, 126, 4581–4595

    Article  CAS  PubMed  Google Scholar 

  7. B. Hellrung, Y. Kamdzhilov, M. Schwörer and J. Wirz, Photorelease of alcohols from 2-nitrobenzyl ethers proceeds via hemiacetals and may be further retarded by buffers intercepting the primary aci-nitro intermediates, J. Am. Chem. Soc., 2005, 127, 8934–8935.

    Article  CAS  PubMed  Google Scholar 

  8. G. Papageorgiou and J. E. T. Corrie, Synthetic and photochemical studies of N-arenesulfonyl amino acids, Tetrahedron, 1999, 55, 237–254.

    Article  CAS  Google Scholar 

  9. E. A. Schwartz and M. Tachibana, Electrophysiology of glutamate and sodium cotransport in a glial cell of the salamander retina, J. Physiol., 1990, 426, 43–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. E. T. Corrie and D. R. Trentham, Caged nucleotides and neurotransmitters, in Bioorganic Photochemistry, ed. H. Morrison, Wiley, New York, 1993, vol. 2, p. 262.

    Google Scholar 

  11. A. Barth, J. E. T. Corrie, M. J. Gradwell, Y. Maeda, W. Mäntele, T. Meier and D. R. Trentham, Time-resolved infrared spectroscopy of intermediates and products from photolysis of 1-(2-nitrophenyl)ethyl phosphates: reaction of the 2-nitrosoacetophenone by-product with thiols, J. Am. Chem. Soc., 1997, 119, 4149–4159.

    Article  CAS  Google Scholar 

  12. F. S. Parker, Applications of Infrared Spectroscopy in Biochemistry, Biology and Medicine, Plenum, New York, 1971, p. 365.

    Book  Google Scholar 

  13. G. Papageorgiou, D. C. Ogden, A. Barth and J. E. T. Corrie, Photorelease of carboxylic acids from 1-acyl-7-nitroindolines in aqueous solution: rapid and efficient photorelease of l-glutamate, J. Am. Chem. Soc., 1999, 121, 6503–6504

    Article  CAS  Google Scholar 

  14. G. Papageorgiou and J. E. T. Corrie, Effects of aromatic substitution on the photocleavage of 1-acyl-7-nitroindolines, Tetrahedron, 2000, 56, 8197–8205.

    Article  CAS  Google Scholar 

  15. J. H. Kaplan and G. C. R. Ellis-Davies, Photolabile chelators for the rapid photorelease of divalent cations, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 6571–6575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. C. R. Ellis-Davies and J. H. Kaplan, Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 187–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G. Papageorgiou, D. Ogden and J. E. T. Corrie, An antenna-sensitized nitroindoline precursor to enable photorelease of l-glutamate in high concentrations, J. Org. Chem., 2004, 69, 7228–7233.

    Article  CAS  PubMed  Google Scholar 

  18. F. Fleyfel and J. P. Devlin, FT-IR spectra of CO2 clusters, J. Phys. Chem., 1989, 93, 7292–7294

    Article  CAS  Google Scholar 

  19. M. Kalk, Amorphous solid carbon dioxide, J. Chem. Phys., 1987, 86, 560–564.

    Article  Google Scholar 

  20. C. Ho and J. M. Sturtevant, The kinetics of hydration of carbon dioxide at 25°, J. Biol. Chem., 1963, 238, 3499–3501.

    Article  CAS  PubMed  Google Scholar 

  21. G. Papageorgiou, A. Barth and J. E. T. Corrie, Flash photolytic release of alcohols from photolabile carbamates or carbonates is rate-limited by decarboxylation of the photoproduct, Photochem. Photobiol. Sci., 2005, 4, 216–220.

    Article  CAS  PubMed  Google Scholar 

  22. A. Patchornik, B. Amit and R. B. Woodward, Photosensitive protecting groups, J. Am. Chem. Soc., 1970, 92, 6333–6335.

    Article  CAS  Google Scholar 

  23. B. Amit, U. Zehavi and A. Patchornik, Photosensitive protecting groups of amino sugars and their use in glycoside synthesis. 2-Nitrobenzyloxycarbonylamino and 6-nitroveratryloxycarbonylamino derivatives, J. Org. Chem., 1974, 39, 192–196.

    Article  Google Scholar 

  24. A. Barth and J. E. T. Corrie, Characterization of a new caged proton capable of inducing large pH jumps, Biophys. J., 2002, 83, 2864–2871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. D. Margerum and C. T. Petrusis, The photodecarboxylation of nitrophenylacetate ions, J. Am. Chem. Soc., 1969, 91, 2467–2472

    Article  CAS  Google Scholar 

  26. P. Wan and S. Muralidharan, Structure and mechanism in the photo-retro-aldol type reactions of nitrobenzyl derivatives. Photochemical heterolytic cleavage of C-C bonds, J. Am. Chem. Soc., 1988, 110, 4336–4345.

    Article  CAS  Google Scholar 

  27. R. Pethig, M. Kuhn, R. Payne, E. Adler, T. H. Chen and L. F. Jaffe, On the dissociation constants of BAPTA-type calcium buffers, Cell Calcium, 1989, 10, 491–498.

    Article  CAS  PubMed  Google Scholar 

  28. M. D. Rand, A. Lindblom, J. Carlson, B. O. Villoutriex and J. Stenflo, Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like modules of human Notch-1 implicated in receptor-ligand interactions, Protein Sci., 1997, 6, 2059–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Masino, S. R. Martin and P. M. Bayley, Ligand binding and thermodynamic stability of a multidomain protein, calmodulin, Protein Sci., 2000, 9, 1519–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum, New York, 1974, vol. 1, pp. 116, 198 and 204

    Google Scholar 

  31. T. Christensen, D. M. Gooden, J. E. King and E. J. Toone, Additivity and the physical basis of multivalency effects: a thermodynamic investigation of the calcium EDTA interaction, J. Am. Chem. Soc., 2003, 125, 7375–7366.

    Google Scholar 

  32. D. Budac and P. Wan, Photodecarboxylation: mechanism and synthetic utility, J. Photochem. Photobiol., A, 1992, 67, 135–166

    Article  CAS  Google Scholar 

  33. P. Wan and D. Budac, Photodecarboxylation of acids and lactones, in Organic Photochemistry and Photobiology, ed. W. M. Horspool and P. S. Song, CRC Press, Boca Raton, 1995, ch. 31, pp. 384–392

    Google Scholar 

  34. S. A. Fleming and J. A. Pincock, Photochemical cleavage reactions of benzyl-heteroatom sigma bonds, in Organic Molecular Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 1999, ch. 5, pp. 211–281

    Google Scholar 

  35. F. Boscá, M. L. Marín and M. A. Miranda, Photodecarboxylation of acids and lactones: anti-inflammatory drugs, in Organic Photochemistry and Photobiology, ed. W. M. Horspool and F. Lenci, CRC Press, Boca Raton, 2003, 2nd edn, ch. 64, pp. 64·1–64·10.

    Google Scholar 

  36. C. K. Lee and P. Wan, Photoredox chemistry of p-nitrophenylalanine and p-nitrophenethylamine in basic aqueous solution: formation of an observable long-lived intermediate, J. Photochem. Photobiol., A, 1993, 76, 39–45.

    Article  CAS  Google Scholar 

  37. O. Meth-Cohn, The mechanism of the photochemical transformations of N-2,4-dinitrophenyl-α-amino-acids, Tetrahedron Lett., 1970, 1235–1236.

    Google Scholar 

  38. R. S. Davidson, P. R. Steiner, Mechanism of the photoinduced decarboxylation of carboxylic acids sensitised by aromatic ketones and quinones, J. Chem. Soc., Perkin Trans. 2, 1971, 1357–1362

    Google Scholar 

  39. K. O. Hiller, B. Masloch, M. Göbl and K. D. Asmus, Mechanism of the OH? radical induced oxidation of methionine in aqueous solution, J. Am. Chem. Soc., 1981, 103, 2734–2743.

    Article  CAS  Google Scholar 

  40. G. C. R. Ellis-Davies, Synthesis of photolabile EGTA derivatives, Tetrahedron Lett., 1998, 39, 953–956.

    Article  CAS  Google Scholar 

  41. U. C. Yoon and P. S. Mariano, Mechanistic and synthetic aspects of amine-enone single electron transfer photochemistry, Acc. Chem. Res., 1992, 25, 233–240

    Article  CAS  Google Scholar 

  42. J. Santamaria, Photoinduced electron transfer in organic synthesis: applications to alkaloids, Pure Appl. Chem., 1995, 67, 141–147.

    Article  CAS  Google Scholar 

  43. I. Willner, A. Riklin and N. Lapidot, Electron-transfer communication between a redox polymer matrix and an immobilized enzyme: activity of nitrate reductase in a viologen-acrylamide copolymer, J. Am. Chem. Soc., 1990, 112, 6438–6439

    Article  CAS  Google Scholar 

  44. K. S. Suslick and R. A. Watson, The photochemistry of chromium, manganese and iron porphyrin complexes, New J. Chem., 1992, 16, 633–642.

    CAS  Google Scholar 

  45. J. Chen, D. F. Ollis, W. H. Rulkens and H. Bruning, Photocatalyzed deposition and concentration of soluble uranium(vi) from TiO2 suspensions, Colloids Surf., A, 1999, 151, 339–349

    Article  CAS  Google Scholar 

  46. A. Wallo, H. G. Brittain, Photochemical behavior of the Nd(iii) and Ho(iii) complexes of ethylenediaminetetraacetic acid, J. Inorg. Nucl. Chem., 1981, 43, 561–563.

    Article  CAS  Google Scholar 

  47. M. A. El Korshy and R. M. Hassan, Kinetics and mechanism of redox reaction between ADA and hexachloroiridate(iv) in acid perchlorate solutions, Bull. Pol. Acad. Sci., Chem., 1998, 46, 147–156.

    CAS  Google Scholar 

  48. J. E. T. Corrie, B. C. Gilbert, V. R. N. Munasinghe and A. C. Whitwood, EPR studies of the structure of transient radicals formed in photolytic reactions of some 2-nitrobenzyl compounds. Characterisation of aryl alkoxy nitroxides and nitroaromatic radical-anions in the photolysis of caged ATP and related compounds, J. Chem. Soc., Perkin Trans. 2, 2000, 2483–2491.

    Google Scholar 

  49. K. Takahashi, T. Komura and H. Imanaga, Light-induced redox characteristics of [tetrakis(4-methylpyridyl)porphorinato]manganese, Bull. Chem. Soc. Jpn., 1983, 56, 3203–3207.

    Article  CAS  Google Scholar 

  50. G. C. R. Ellis-Davies, J. J. Kaplan and R. J. Barsotti, Laser photolysis of caged calcium: rates of calcium release by nitrophenyl-EGTA and DM-nitrophen, Biophys. J., 1996, 70, 1006–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Wilcox, R. W. Viola, K. W. Johnson, A. P. Billington, B. K. Carpenter, J. A. McCray, A. P. Guzikowski and G. P. Hess, Synthesis of photolabile precursors of amino-acid neurotransmitters, J. Org. Chem., 1990, 55, 1585–1589.

    Article  CAS  Google Scholar 

  52. A. Barth, K. Hauser, W. Mäntele, J. E. T. Corrie and D. R. Trentham, The photochemical release of ATP from “caged ATP” studied by time-resolved infrared spectroscopy, J. Am. Chem. Soc., 1995, 117, 10311–10316.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. T. Corrie.

Additional information

Electronic supplementary information (ESI) available: Synthetic details for compounds 4-6, 8 and 9, Fig. S1 and S2, and details of the equations underlying the calcium titrations. See DOI: 10.1039/b515469c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, A., Martin, S.R. & Corrie, J.E.T. Decarboxylation is a significant reaction pathway for photolabile calcium chelators and related compounds. Photochem Photobiol Sci 5, 107–115 (2006). https://doi.org/10.1039/b515469c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b515469c

Navigation