Skip to main content
Log in

Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A stereotypical image of a retinal-binding proton pump derived from extensive studies of halobacterial ion-transporting and sensory rhodopsins is a fast-cycling protein which possesses two strategically placed carboxylic acids serving as proton donor and acceptor for the retinal Schiff base. We review recent biophysical and bioinformatic data on the novel eubacterial and eucaryotic rhodopsins to analyze the extent of conservation of the haloarchaeal mechanism of transmembrane proton transport. We show that only the most essential elements of the haloarchaeal proton-pumping machinery are conserved universally, and that a mere presence of these elements in primary structures does not guarantee the proton-pumping ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BR:

bacteriorhodopsin

HR:

halorhodopsin

SR:

halobacterial sensory rhodopsin

PR:

proteorhodopsin

GPR:

green-absorbing

PR:

BPR, blue-absorbing PR

NR:

Neurospora rhodopsin

LR:

Leptosphaeria rhodopsin

ORP:

opsin-related protein.

References

  1. U. Haupts, J. Tittor and D. Oesterhelt, Closing in on bacteriorhodopsin: progress in understanding the molecule, Annu. Rev. Biophys. Biomol. Struct., 1999, 28, 367–399

    CAS  PubMed  Google Scholar 

  2. J. K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol., 2004, 66, 665–668.

    Article  CAS  PubMed  Google Scholar 

  3. A. Oren, Bioenergetic aspects of halophilism, Microbiol. Mol. Biol. Rev., 1999, 63, 334–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. L. Spudich, C. Yang, K. Jung and E. N. Spudich, Retinylidene proteins: structures and functions from archaea to humans, Annu. Rev. Cell Dev. Biol., 2000, 16, 365–392.

    Article  CAS  PubMed  Google Scholar 

  5. M. X. Ruiz-Gonzalez and I. Marin, New insights into the evolutionary history of type 1 rhodopsins, J. Mol. Evol., 2004, 58, 348–358.

    Article  CAS  PubMed  Google Scholar 

  6. J. L. Spudich and K.-H. Jung, Microbial rhodopsins: phylogenetic and functional diversity, in Handbook of Photosensory Receptors, ed. W. R. Briggs and J. L. Spudich, Wiley-VCH, 1st edn, 2005, pp. 1–24.

    Google Scholar 

  7. J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson and C. Pfannkoch, Environmental genome shotgun sequencing of the Sargasso sea, Science, 2004, 304, 66–74.

    Article  CAS  PubMed  Google Scholar 

  8. G. Sabehi, A. Loy, K. H. Jung, R. Partha, J. L. Spudich, T. Isaacson, J. Hirschberg, M. Wagner, O. Béjà, New insights into metabolic properties of marine bacteria encoding proteorhodopsins, PLoS Biol., 2005, 3, e273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. L. S. Brown, Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions, Photochem. Photobiol. Sci., 2004, 3, 555–565.

    Article  CAS  PubMed  Google Scholar 

  10. O. Béjà, L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. B. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich and E. F. DeLong, Bacterial rhodopsin: evidence for a new type of phototrophy in the sea, Science, 2000, 289, 1902–1906.

    Article  PubMed  Google Scholar 

  11. O. A. Sineshchekov and J. L. Spudich, Light-induced intramolecular charge movements in microbial rhodopsins in intact E. coli cells, Photochem. Photobiol. Sci., 2004, 3, 548–554.

    Article  CAS  PubMed  Google Scholar 

  12. S. P. Balashov, E. S. Imasheva, V. A. Boichenko, J. Antón, J. M. Wang and J. K. Lanyi, Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna, Science, 2005, 309, 2061–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. A. Waschuk, A. G. Bezerra, Jr., L. Shi and L. S. Brown, Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eucaryote, Proc. Natl. Acad. Sci. USA, 2005, 102, 6879–6883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. K. Lanyi and B. Schobert, Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle, Biochemistry, 2004, 43, 3–8

    Article  CAS  PubMed  Google Scholar 

  15. S. Subramaniam, T. Hirai and R. Henderson, From structure to mechanism: electron crystallographic studies of bacteriorhodopsin, Philos. Trans. R. Soc. London, Ser. A, 2002, 360, 859–874.

    Article  CAS  Google Scholar 

  16. J. Heberle, J. Fitter, H. J. Sass, G. Büldt, Bacteriorhodopsin: the functional details of a molecular machine are being resolved, Biophys. Chem., 2000, 85, 229–248

    Article  CAS  PubMed  Google Scholar 

  17. R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro and E. M. Landau, Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport, Biochim. Biophys. Acta, 2002, 1565, 144–167

    Article  CAS  PubMed  Google Scholar 

  18. B. W. Edmonds and H. Luecke, Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin, Front. Biosci., 2004, 9, 1556–1566.

    Article  CAS  PubMed  Google Scholar 

  19. M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana and K. J. Rothschild, Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residue-85, residue-96, and residue-212, Biochemistry, 1988, 27, 8516–8520.

    Article  CAS  PubMed  Google Scholar 

  20. H. J. Butt, K. Fendler, E. Bamberg, J. Tittor and D. Oesterhelt, Aspartic acid-96 and aspartic acid-85 play a central role in the function of bacteriorhodopsin as a proton pump, EMBO J., 1989, 8, 1657–1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. Gerwert, G. Souvignier and B. Hess, Simultaneous monitoring of light-induced changes in protein side group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy, Proc. Natl. Acad. Sci. USA, 1990, 87, 9774–9778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling, Electrophoresis, 1997, 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  23. H. Luecke, H.-T. Richter and J. K. Lanyi, Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution, Science, 1998, 280, 1934–1937.

    Article  CAS  PubMed  Google Scholar 

  24. H. Otto, T. Marti, M. Holz, T. Mogi, L. J. Stern, F. Engel, H. G. Khorana and M. P. Heyn, Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base, Proc. Natl. Acad. Sci. USA, 1990, 87, 1018–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. P. Balashov, R. Govindjee, M. Kono, E. Imasheva, E. Lukashev, T. G. Ebrey, R. K. Crouch, D. R. Menick and Y. Feng, Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle, Biochemistry, 1993, 32, 10331–10343

    Article  CAS  PubMed  Google Scholar 

  26. L. S. Brown, J. Sasaki, H. Kandori, A. Maeda, R. Needleman and J. K. Lanyi, Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin, J. Biol. Chem., 1995, 270, 27122–27126

    Article  CAS  PubMed  Google Scholar 

  27. S. P. Balashov, E. S. Imasheva, T. G. Ebrey, N. Chen, D. R. Menick and R. K. Crouch, Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin, Biochemistry, 1997, 36, 8671–8676

    Article  CAS  PubMed  Google Scholar 

  28. Y. W. Xiao, M. S. Hutson, M. Belenky, J. Herzfeld and M. S. Braiman, Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine, Biochemistry, 2004, 43, 12809–12818

    Article  CAS  PubMed  Google Scholar 

  29. F. Garczarek, L. S. Brown, J. K. Lanyi and K. Gerwert, Proton binding within a membrane protein by a protonated water cluster, Proc. Natl. Acad. Sci. USA, 2005, 102, 3633–3638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. B. Schobert, L. S. Brown and J. K. Lanyi, Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base, J. Mol. Biol., 2003, 330, 553–570.

    Article  CAS  PubMed  Google Scholar 

  31. J. Riesle, D. Oesterhelt, N. A. Dencher and J. Heberle, D38 is an essential part of the proton translocation pathway in bacteriorhodopsin, Biochemistry, 1996, 35, 6635–6643

    Article  CAS  PubMed  Google Scholar 

  32. L. S. Brown, R. Needleman and J. K. Lanyi, Functional roles of aspartic acid residues at the cytoplasmic surface of bacteriorhodopsin, Biochemistry, 1999, 38, 6855–6861.

    Article  CAS  PubMed  Google Scholar 

  33. K. Ihara, T. Umemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura and Y. Mukohata, Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol., 1999, 285, 163–174.

    Article  CAS  PubMed  Google Scholar 

  34. L. S. Brown, Proton transport mechanism of bacteriorhodopsin as revealed by site-specific mutagenesis and protein sequence variability, Biochemistry (Moscow), 2001, 66, 1249–1255.

    Article  CAS  Google Scholar 

  35. W. V. Ng, S. P. Kennedy, G. G. Mahairas, B. Berquist, M. Pan, H. D. Shukla, S. R. Lasky, N. S. Baliga, V. Thorsson, J. Sbrogna, S. Swartzell, D. Weir, J. Hall, T. A. Dahl, R. Welti, Y. A. Goo, B. Leithauser, K. Keller, R. Cruz, M. J. Danson, D. W. Hough and D. Maddocks, Genome sequence of Halobacterium species NRC-1, Proc. Natl. Acad. Sci. USA, 2000, 97, 12176–12181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. S. Baliga, R. Bonneau, M. T. Facciotti, M. Pan, G. Glusman, E. W. Deutsch, P. Shannon, Y. Chiu, R. S. Weng, R. R. Gan, P. Hung, S. V. Date, E. Marcotte, L. Hood and W. V. Ng, Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea, Genome Res., 2004, 14, 2221–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Sasaki and J. L. Spudich, Proton transport by sensory rhodopsins and its modulation by transducer-binding, Biochim. Biophys. Acta, 2000, 1460, 230–239.

    Article  CAS  PubMed  Google Scholar 

  38. G. Schmies, B. Lüttenberg, I. Chizhov, M. Engelhard, A. Becker and E. Bamberg, Sensory rhodopsin II from the haloalkaliphilic Natronobacterium pharaonis: light-activated proton transfer reactions, Biophys. J., 2000, 78, 959–966.

    Article  Google Scholar 

  39. Y. Sudo, M. Iwamoto, K. Shimono, M. Sumi and N. Kamo, Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer, Biophys. J., 2001, 80, 916–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. I. Bibikov, R. N. Grishanin, A. D. Kaulen, W. Marwan, D. Oesterhelt and V. P. Skulachev, Bacteriorhodopsin is involved in halobacterial photoreception, Proc. Natl. Acad. Sci. USA, 1993, 90, 9446–9450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. K. Koch and D. Oesterhelt, MpcT is the transducer for membrane potential changes in Halobacterium salinarum, Mol. Microbiol., 2005, 55, 1681–1694.

    Article  CAS  PubMed  Google Scholar 

  42. W.-W. Wang, O. A. Sineshchekov, E. N. Spudich and J. L. Spudich, Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin, J. Biol. Chem., 2003, 278, 33985–33991.

    Article  CAS  PubMed  Google Scholar 

  43. S. Checover, Y. Marantz, E. Nachliel, M. Gutman, M. Pfeiffer, J. Tittor, D. Oesterhelt and N. A. Dencher, Dynamics of the proton transfer reaction on the cytoplasmic surface of bacteriorhodopsin, Biochemistry, 2001, 40, 4281–4292.

    Article  CAS  PubMed  Google Scholar 

  44. E. P. Lukashev, R. Govindjee, M. Kono, T. G. Ebrey, Y. Sugiyama and Y. Mukohata, pH dependence of the absorption spectra and photochemical transformations of the archaerhodopsins, Photochem. Photobiol., 1994, 60, 69–75

    Article  CAS  PubMed  Google Scholar 

  45. Q. G. Li, Q. G. Sun, W. Zhao, H. Wang and D. Q. Xu, Newly isolated archaerhodopsin from a strain of Chinese halobacteria and its proton pumping behavior, Biochim. Biophys. Acta, 2000, 1466, 260–266.

    Article  CAS  PubMed  Google Scholar 

  46. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. T. Kouyama, A. Nasuda-Kouyama, Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light intensity dependences, Biochemistry, 1989, 28, 5963–5970.

    Article  CAS  Google Scholar 

  48. S. Moltke, M. P. Krebs, R. Mollaaghababa, H. G. Khorana and M. P. Heyn, Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85⇒Asn and Asp212⇒Asn: effects of pH and anions, Biophys. J., 1995, 69, 2074–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. G. Váró, L. S. Brown, R. Needleman and J. K. Lanyi, Proton transport by halorhodopsin, Biochemistry, 1996, 35, 6604–6611.

    Article  PubMed  Google Scholar 

  50. O. Béjà, E. N. Spudich, J. L. Spudich, M. Leclerc and E. F. DeLong, Proteorhodopsin phototrophy in the ocean, Nature, 2001, 411, 786–789.

    Article  PubMed  Google Scholar 

  51. J. R. de la Torre, L. M. Christianson, O. Béjà, M. T. Suzuki, D. M. Karl, J. Heidelberg and E. F. DeLong, Proteorhodopsin genes are distributed among divergent marine bacterial taxa, Proc. Natl. Acad. Sci. USA, 2003, 100, 12830–12835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. S. J. Giovannoni, L. Bibbs, J. C. Cho, M. D. Stapels, R. Desiderio, K. L. Vergin, M. S. Rappe, S. Laney, L. J. Wilhelm, H. J. Tripp, E. J. Mathur and D. F. Barofsky, Proteorhodopsin in the ubiquitous marine bacterium SAR11, Nature, 2005, 438, 82–85.

    Article  CAS  PubMed  Google Scholar 

  53. K. H. Jung, V. D. Trivedi and J. L. Spudich, Demonstration of a sensory rhodopsin in eubacteria, Mol. Microbiol., 2003, 47, 1513–1522.

    Article  CAS  PubMed  Google Scholar 

  54. J. A. Kyndt, T. E. Meyer and M. A. Cusanovich, Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria, Photochem. Photobiol. Sci., 2004, 3, 519–530.

    Article  CAS  PubMed  Google Scholar 

  55. D. Man, W. W. Wang, G. Sabehi, L. Aravind, A. F. Post, R. Massana, E. N. Spudich, J. L. Spudich, O. Béjà, Diversification and spectral tuning in marine proteorhodopsins, EMBO J., 2003, 22, 1725–1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. K. Dioumaev, L. S. Brown, J. Shih, E. N. Spudich, J. L. Spudich and J. K. Lanyi, Proton transfers in the photochemical reaction cycle of proteorhodopsin, Biochemistry, 2002, 41, 5348–5358.

    Article  CAS  PubMed  Google Scholar 

  57. T. Friedrich, S. Geibel, R. Kalmbach, I. Chizhov, K. Ataka, J. Heberle, M. Engelhard and E. Bamberg, Proteorhodopsin is a light-driven proton pump with variable vectoriality, J. Mol. Biol., 2002, 321, 821–838.

    Article  CAS  PubMed  Google Scholar 

  58. R. Partha, R. Krebs, T. L. Caterino and M. S. Braiman, Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counterion implies structural differences from bacteriorhodopsin, Biochim. Biophys. Acta, 2005, 1708, 6–12.

    Article  CAS  PubMed  Google Scholar 

  59. K. D. Olson and J. L. Spudich, Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle, Biophys. J., 1993, 62, 2578–2585.

    Article  Google Scholar 

  60. A. K. Dioumaev, J. M. Wang, Z. Balint, G. Váró and J. K. Lanyi, Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic, Biochemistry, 2003, 42, 6582–6587.

    Article  CAS  PubMed  Google Scholar 

  61. M. Lakatos, J. Lanyi, J. Szakacs, G. Váró, The photochemical reaction cycle of proteorhodopsin at low pH, Biophys. J., 2003, 84, 3252–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. Furutani, M. Shibata and H. Kandori, Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins, Photochem. Photobiol. Sci., 2005, 4, 661–666.

    Article  CAS  PubMed  Google Scholar 

  63. Y. Furutani, D. Ikeda, M. Shibata and H. Kandori, Strongly hydrogen-bonded water molecule is observed only in the alkaline form of proteorhodopsin, Chem. Phys., 2006 DOI: 10.1016/j.chemphys.2005.12.013.

    Google Scholar 

  64. V. Bergo, J. J. Amsden, E. N. Spudich, J. L. Spudich and K. J. Rothschild, Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction, Biochemistry, 2004, 43, 9075–9083.

    Article  CAS  PubMed  Google Scholar 

  65. E. S. Imasheva, S. P. Balashov, J. M. Wang, A. K. Dioumaev and J. K. Lanyi, Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227, Biochemistry, 2004, 43, 1648–1655.

    Article  CAS  PubMed  Google Scholar 

  66. S. Y. Kim, S. A. Waschuk, L. S. Brown and K. H. Jung, unpublished work.

  67. J. K. Delaney, U. Schweiger and S. Subramaniam, Molecular mechanism of protein-retinal coupling in bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 1995, 92, 11120–11124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. B. R. Kelemen, M. Du and R. B. Jensen, Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells, Biochim. Biophys. Acta, 2003, 1618, 25–32.

    Article  CAS  PubMed  Google Scholar 

  69. R. Krebs, U. Alexiev, R. Partha, A. M. DeVita and M. Braiman, Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin, BMC Physiol., 2002, 2, 5

    Article  PubMed  PubMed Central  Google Scholar 

  70. Y. W. Xiao, R. Partha, R. Krebs and M. Braiman, Time-resolved FTIR spectroscopy of the photointermediates involved in fast transient H+ release by proteorhodopsin, J. Phys. Chem. B, 2005, 109, 634–641.

    Article  CAS  PubMed  Google Scholar 

  71. G. Váró, L. S. Brown, M. Lakatos and J. K. Lanyi, Characterization of the photochemical reaction cycle of proteorhodopsin, Biophys. J., 2003, 84, 1202–1207.

    Article  PubMed  PubMed Central  Google Scholar 

  72. G. Sabehi, R. Massana, J. P. Bielawski, M. Rosenberg, E. F. Delong, O. Béjà, Novel proteorhodopsin variants from the Mediterranean and Red seas, Environ. Microbiol., 2003, 5, 842–849.

    Article  CAS  PubMed  Google Scholar 

  73. D. Man-Aharonovich, G. Sabehi, O. A. Sineshchekov, E. N. Spudich, J. L. Spudich, O. Béjà, Characterization of RS29, a blue-green proteorhodopsin variant from the Red Sea, Photochem. Photobiol. Sci., 2004, 3, 459–463.

    Article  CAS  PubMed  Google Scholar 

  74. J. P. Bielawski, K. A. Dunn, G. Sabehi, O. Béjà, Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment, Proc. Natl. Acad. Sci. USA, 2004, 101, 14824–14829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. M. S. Schwalbach, M. Brown and J. A. Fuhrman, Impact of light on marine bacterioplankton community structure, Aquatic Microbial Ecol., 2005, 39, 235–245.

    Article  Google Scholar 

  76. A. R. Choi, A. G. Bezerra, Jr., L. Shi, M. Miranda-Moura, L. S. Brown and K. H. Jung, unpublished work.

  77. J. Saranak and K. W. Foster, Rhodopsin guides fungal phototaxis, Nature, 1997, 387, 465–466

    Article  CAS  PubMed  Google Scholar 

  78. F. Derguini, P. Mazur, K. Nakanishi, D. M. Starace, J. Saranak and K. W. Foster, All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii, Photochem. Photobiol., 1991, 54, 1017–1021

    Article  CAS  PubMed  Google Scholar 

  79. M. A. Lawson, D. N. Zacks, F. Derguini, K. Nakanishi and J. L. Spudich, Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin, Biophys. J., 1991, 60, 1490–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. J. Saranak and K. W. Foster, Photoreceptor for curling behavior in Peranema trichophorum and evolution of eukaryotic rhodopsins, Eukaryot. Cell, 2005, 4, 1605–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. S. Kateriya, G. Nagel, E. Bamberg and P. Hegemann, “Vision” in single-celled algae, News Physiol. Sci., 2004, 19, 133–137

    CAS  PubMed  Google Scholar 

  82. S. C. Burey, S. Fathi-Nejad, V. Poroyko, J. M. Steiner, W. Löffelhardt and H. J. Bohnert, The central body of the cyanelles of Cyanophora paradoxa: a eukaryotic carboxysome?, Can. J. Bot., 2005, 83, 758–764.

    Article  CAS  Google Scholar 

  83. O. A. Sineshchekov, E. G. Govorunova, K.-H. Jung, S. Zauner, U. G. Maier and J. L. Spudich, Rhodopsin-mediated photoreception in cryptophyte flagellates, Biophys. J., 2005, 89, 4310–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. J. A. Bieszke, E. L. Braun, L. E. Bean, S. Kang, D. O. Natvig and K. A. Borkovich, The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins, Proc. Natl. Acad. Sci. USA, 1999, 96, 8034–8039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. J. A. Bieszke, E. N. Spudich, K. L. Scott, K. A. Borkovich and J. L. Spudich, A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment, Biochemistry, 1999, 38, 14138–14145.

    Article  CAS  PubMed  Google Scholar 

  86. L. S. Brown, A. K. Dioumaev, J. K. Lanyi, E. N. Spudich and J. L. Spudich, Photochemical reaction cycle and proton transfers in Neurospora rhodopsin, J. Biol. Chem., 2001, 276, 32495–32505.

    Article  CAS  PubMed  Google Scholar 

  87. V. Bergo, E. N. Spudich, J. L. Spudich and K. J. Rothschild, A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins, Photochem. Photobiol., 2002, 73, 341–349.

    Article  Google Scholar 

  88. Y. Furutani, A. G. Bezerra, Jr., S. Waschuk, M. Sumii, L. S. Brown and H. Kandori, FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, the protein, and the water molecules after photoisomerization, Biochemistry, 2004, 43, 9636–9646.

    Article  CAS  PubMed  Google Scholar 

  89. A. Idnurm and B. J. Howlett, Characterization of an opsin gene from the ascomycete Leptosphaeria maculans, Genome, 2001, 44, 167–171.

    Article  CAS  PubMed  Google Scholar 

  90. M. Sumii, Y. Furutani, S. A. Waschuk, L. S. Brown and H. Kandori, Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, bacteriorhodopsin-like proton pump from a eucaryote, Biochemistry, 2005, 44, 15159–15166.

    Article  CAS  PubMed  Google Scholar 

  91. T. Mogi, L. J. Stern, T. Marti, B. H. Chao and H. G. Khorana, Structure-function studies on bacteriorhodopsin. 7. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 1988, 85, 4148–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. M. Holz, L. A. Drachev, T. Mogi, H. Otto, A. D. Kaulen, M. P. Heyn, V. P. Skulachev and H. G. Khorana, Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M-intermediate and the associated proton movement, Proc. Natl. Acad. Sci. USA, 1989, 86, 2167–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. T. Dyukova, B. Robertson and H. Weetall, Optical and electrical characterization of bacteriorhodopsin films, Biosystems, 1997, 41, 91–98.

    Article  CAS  PubMed  Google Scholar 

  94. Y. Fan, L. Shi and L. S. Brown, unpublished work.

  95. M. M. Prado, A. Prado-Cabrero, R. Fernandez-Martin and J. Avalos, A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi, Curr. Genet., 2004, 46, 47–58.

    Article  CAS  PubMed  Google Scholar 

  96. A. Idnurm and J. Heitman, Light controls growth and development via a conserved pathway in the fungal kingdom, PLoS Biol., 2005, 3, e95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins, The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, 24, 4876–4882.

    Article  Google Scholar 

  98. R. D. M. Page, TREEVIEW: An application to display phylogenetic trees on personal computers, Comp. Appl. Biosci., 1996, 12, 357–358.

    CAS  PubMed  Google Scholar 

  99. O. K. Okamoto and J. W. Hastings, Novel dinoflagellate clock-related genes identified through microarray analysis, J. Phycol., 2003, 39, 519–526.

    Article  CAS  Google Scholar 

  100. These sequence data were produced by the Protist EST Program (http://amoebidia.bcm.umontreal.ca/public/pepdb/welcome.php).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid S. Brown.

Additional information

† This paper was published as part of the special issue on Proton Transfer in Biological Systems.

Leonid S. Brown is an Assistant Professor in the Department of Physics, University of Guelph, Ontario. He obtained his PhD in Biophysics from Moscow State University, Russia, and received postgraduate training at the University of California, Irvine. His early research focused on spectroscopic studies of bacteriorhodopsin and currently he is working on new microbial rhodopsins of eucaryotic and eubacterial origin.

Kwang-Hwan Jung received his PhD at University of Texas-Houston Medical School and worked on the mechanism of phototaxis signaling in Archaea. As a post-doctoral fellow, he initiated research on newly found microbial rhodopsins in cyanobacteria and algae with Dr John Spudich. Since March 2004, he has held a position of an Assistant Professor at Sogang University, Seoul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, L.S., Jung, KH. Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 5, 538–546 (2006). https://doi.org/10.1039/b514537f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b514537f

Navigation