Skip to main content
Log in

Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We review our recent low-temperature absorption, circular dichroism (CD), magnetic CD (MCD), fluorescence and laser-selective measurements of oxygen-evolving Photosystem II (PSII) core complexes and their constituent CP43, CP47 and D1/D2/cytb559 sub-assemblies. Quantitative comparisons reveal that neither absorption nor fluorescence spectra of core complexes are simple additive combinations of the spectra of the sub-assemblies. The absorption spectrum of the D1/D2/cytb559 component embedded within the core complex appears significantly better structured and red-shifted compared to that of the isolated sub-assembly. A characteristic MCD reduction or ‘deficit’ is a useful signature for the central chlorins in the reaction centre. We note a congruence of the MCD deficit spectra of the isolated D1/D2/cytb559 sub-assemblies to their laser-induced transient bleaches associated with P680. A comparison of spectra of core complexes prepared from different organisms helps distinguish features due to inner light-harvesting assemblies and the central reaction-centre chlorins. Electrochromic spectral shifts in core complexes that occur following low-temperature illumination of active core complexes arise from efficient charge separation and subsequent plastoquinone anion (QA-) formation. Such measurements allow determinations of both charge-separation efficiencies and spectral characteristics of the primary acceptor, PheoD1. Efficient charge separation occurs with excitation wavelengths as long as 700 nm despite the illuminations being performed at 1.7 K and with an extremely low level of incident power density. A weak, homogeneously broadened, charge-separating state of PSII lies obscured beneath the CP47 state centered at 690 nm. We present new data in the 690–760 nm region, clearly identifying a band extending to 730 nm. Active core complexes show remarkably strong persistent spectral hole-burning activity in spectral regions attributable to CP43 and CP47. Measurements of homogeneous hole-widths have established that, at low temperatures, excitation transfer from these inner light-harvesting assemblies to the reaction centre occurs with ~70–270 ps-1 rates, when the quinone acceptor is reduced. The rate is slower for lower-energy sub-populations of an inhomogeneously broadened antenna (trap) pigment. The complex low-temperature fluorescence behaviour seen in PSII is explicable in terms of slow excitation transfer from traps to the weak low-energy charge-separating state and transfer to the more intense reaction-centre excitations near 685 nm. The nature and origin of the charge-separating state in oxygen-evolving PSII preparations is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Yoder, A. G. Cole and R. J. Sension, Structure and Function in the Isolated Reaction Center Complex of Photosystem II: Energy and Charge Transfer Dynamics and Mechanism, Photosynth. Res., 2002, 72, 147.

    Article  CAS  PubMed  Google Scholar 

  2. B. A. Diner and F. Rappaport, Structure, Dynamics, and Energetics of the Primary Photochemistry of Photosystem II of Oxygenic Photosynthesis, Annu. Rev. Plant Biol., 2002, 53, 551.

    Article  CAS  PubMed  Google Scholar 

  3. J. P. Dekker, R. van Grondelle, Primary Charge Separation in Photosystem II, Photosynth. Res., 2000, 63, 195.

    Article  CAS  PubMed  Google Scholar 

  4. J. Biesiadka, B. Loll, J. Kern, K.-D. Irrgang and A. Zouni, Crystal structure of cyanobacterial Photosystem II at 3.2 Å resolution: a closer look at the Mn-cluster, Phys. Chem. Chem. Phys., 2004, 6, 4733.

    Article  CAS  Google Scholar 

  5. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Architecture of the Photosynthetic Oxygen-Evolving Centre, Science, 2004, 303, 1831.

    Article  CAS  PubMed  Google Scholar 

  6. N. Kamiya, J.-R. Shen, Crystal Structure of Oxygen-Evolving Photosystem II From Thermosynechococcus vulcanus at 3.7-Å Resolution, Proc. Natl. Acad. Sci. USA, 2003, 100, 98.

    Article  CAS  PubMed  Google Scholar 

  7. A. Zouni, H. T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger and P. Orth, Crystal Structure of Photosystem II from Synechococcus elongatus at 3.8 Å Resolution, Nature, 2001, 409, 739.

    Article  CAS  PubMed  Google Scholar 

  8. N. Kamiya and J.-R. Shen, Crystal Structure Analysis of Photosystem II from Thermosynechococcus vulcanus, in the conference proceedings of PS2001: 12th International Congress of Photosynthesis, Brisbane, Australia, 2001, CSIRO Publishing.

    Google Scholar 

  9. K. Riley, R. Jankowiak, M. Rätsep, G. J. Small and V. Zazubovich, Evidence for Highly Dispersive Primary Charge Separation Kinetics and Gross Heterogeneity in the Isolated PSII Reaction Center of Green Plants, J. Phys. Chem., 2004, 108, 10346.

    Article  CAS  Google Scholar 

  10. V. I. Prokhorenko and A. R. Holtzwarth, Primary Processes and Structure of the Photosystem II Reaction Center: A Photon Echo Study, J. Phys. Chem. B, 2000, 104, 11563.

    Article  CAS  Google Scholar 

  11. R. Jankowiak, J. M. Hayes and G. J. Small, An Excitonic Pentamer Model for the Core Qy States of the Isolated Photosystem II Reaction Center, J. Phys. Chem. B, 2002, 106, 8803.

    Article  CAS  Google Scholar 

  12. J. L. Hughes, B. J. Prince, E. Krausz, P. J. Smith, R. J. Pace and H. Riesen, Highly Efficient Spectral Hole-Burning in Oxygen-Evolving Photosystem II Preparations, J. Phys. Chem. B, 2004, 108, 10428.

    Article  CAS  Google Scholar 

  13. M. Germano, C. C. Gradinaru, A. Y. Shkuropatov, I. H. M. van Stokkum, V. A. Shuvalov, J. P. Dekker, R. van Grondelle, H. J. van Gorkom, Energy and Electron Transfer in Photosystem II Reaction Centers with Modified Pheophytin Composition, Biophys. J., 2004, 86, 1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. L. Groot, J. Breton, L. J. G. W. van Wilderen, J. P. Dekker, R. van Grondelle, Femtosecond Visible/Visible and Visible/Mid-IR Pump–Probe Study of the Photosystem II Core Antenna Complex CP47, J. Phys. Chem. B, 2004, 108, 8001.

    Article  CAS  Google Scholar 

  15. B. A. Diner, E. Schlodder, P. J. Nixon, W. J. Coleman, F. Rappaport, J. Lavergne, W. F. J. Vermaas and D. A. Chisholm, Site-Directed Mutations at D1-His198 and D2-His197 of Photosystem II in Synechocystis PCC 6803: Sites of Primary Charge Separation and Cation and Triplet Stabilization, Biochemistry, 2001, 40, 9265.

    Article  CAS  PubMed  Google Scholar 

  16. D. H. Stewart, P. J. Nixon, B. A. Diner and G. W. Brudvig, Assignment of the Qy Absorbance Bands of Photosystem II Chromophores by Low-Temperature Optical Spectroscopy of Wild-Type and Mutant Reaction Centres, Biochemistry, 2000, 39, 14583.

    Article  CAS  PubMed  Google Scholar 

  17. J. R. Durrant, D. R. Klug, S. L. S. Kwa, R. van Grondelle, G. Porter and J. P. Dekker, A Multimer Model for P680, the Primary Electron Donor of Photosystem II, Proc. Natl. Acad. Sci. USA, 1995, 92, 4798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. R. Greenfield, M. Seibert and M. R. Wasielewski, Time-Resolved Absorption Changes of the Pheophytin Qx Band in Isolated Photosystem II Reaction Centers at 7 K: Energy Transfer and Charge Separation, J. Phys. Chem. B, 1999, 103, 8364.

    Article  CAS  Google Scholar 

  19. B. Svensson, C. Etchebest, P. Tuffery, P. van Kan, J. Smith and S. Styring, A Model for the Photosystem II Reaction Center Core Including the Structure of the Primary Donor P680, Biochemistry, 1996, 35, 14486.

    Article  CAS  PubMed  Google Scholar 

  20. V. L. Tetenkin, B. A. Gulyaev, M. Seibert and A. B. Rubin, Spectral Properties of Stabilized D1/D2/cytochrome b-559 Photosystem II Reaction Center Complex. Effects of Triton X-100, the Redox State of Pheophytin, and ß-Carotene, FEBS Letters, 1989, 250, 459.

    Article  CAS  Google Scholar 

  21. G. Raszewski, W. Saenger and T. Renger, Theory of optical spectra of Photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor, Biophys. J., 2005, 88, 986.

    Article  CAS  PubMed  Google Scholar 

  22. S. R. Greenfield and M. R. Wasielewski, Excitation Energy Transfer and Charge Separation in the Isolated Photosystem II Reaction Center, Photosynth. Res., 1996, 48, 83.

    Article  CAS  PubMed  Google Scholar 

  23. R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, 2002, p. 321.

    Book  Google Scholar 

  24. J. L. Hughes, E. Krausz, P. J. Smith and R. J. Pace, The Lowest-Energy Excited State of P680 in Oxygen-Evolving Photosystem II Extends to 700 nm, in the conference proceedings of PS2004: 13th International Congress of Photosynthesis, Montreal, Canada, 2004, Allen Press.

  25. D. Zheleva, B. Hankamer and J. Barber, Heterogeneity and Pigment Composition of Isolated Photosystem II Reaction Centers, Biochemistry, 1996, 35, 15074.

    Article  CAS  PubMed  Google Scholar 

  26. P. J. Smith, S. Peterson, V. M. Masters, T. Wydrzynski, S. Styring, E. Krausz and R. J. Pace, Magneto-Optical Measurements of the Pigments in Fully Active Photosystem II Core Complexes from Plants, Biochemistry, 2002, 41, 1981.

    Article  CAS  PubMed  Google Scholar 

  27. S. Peterson Årsköld, V. M. Masters, B. J. Prince, P. J. Smith, R. J. Pace and E. Krausz, Optical Spectra of Synechocystis and Spinach Photosystem II Preparations: Identification of the D1-Pheophytin Energies and Stark Shifts, J. Am. Chem. Soc., 2003, 125, 13063.

    Article  PubMed  CAS  Google Scholar 

  28. O. Nanba and K. Satoh, Isolation of a Photosystem II Reaction Center Consisting of D-1 and D-2 Polypeptides and Cytochrome b-559, Proc. Natl. Acad. Sci. USA, 1987, 84, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Seibert, Biochemical, Biophysical, and Structural Characterization of the Isolated Photosystem II Reaction Center Complex, in The Photosynthetic Reaction Center, ed. J. Deisenhofer and J. Norris, Academic Press, New York, 1993, p. 319.

    Chapter  Google Scholar 

  30. M.-L. Groot, F. van Mourik, C. Eijckelhoff, I. H. M. van Stokkum, J. P. Dekker, R. van Grondelle, Charge Separation in the Reaction Center of Photosystem II Studied as a Function of Temperature, Proc. Natl. Acad. Sci. USA, 1997, 94, 4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. J. M. van Kan, S. C. M. Otte, F. A. M. Kleinherenbrink, M. C. Nieveen, T. J. Aartsma, H. J. van Gorkom, Time-Resolved Spectroscopy at 10 K of the Photosystem II Reaction Center; Deconvolution of the Red Absorption Band, Biochim. Biophys. Acta, 1990, 1020, 146.

    Article  Google Scholar 

  32. F. Vacha, M. Durchan and P. Siffel, Excitonic Interactions in the Reaction Centre of Photosystem II Studied by Using Circular Dichroism, Biochim. Biophys. Acta, 2002, 1554, 147.

    Article  CAS  PubMed  Google Scholar 

  33. R. Jankowiak, M. Rätsep, R. Picorel, M. Seibert and G. J. Small, Excited States of the 5-Chlorophyll Photosystem II Reaction Center, J. Phys. Chem. B, 1999, 103, 9759.

    Article  CAS  Google Scholar 

  34. M. Bianchetti, D. Zheleva, Z. Deak, S. Zharmuhamedov, V. Klimov, J. Nugent, I. Vass and J. Barber, Comparison of the Functional Properties of the Monomeric and Dimeric Forms of the Isolated CP47-Reaction Center Complex, J. Biol. Chem., 1998, 273, 16128.

    Article  CAS  PubMed  Google Scholar 

  35. A. Zehetner, H. Scheer, P. Siffel and F. Vacha, Photosystem II Reaction Centre with Altered Pigment-Composition: Reconstitution of a Complex Containing Five Chlorophyll a per two Pheophytin a with Modified Chlorophylls, Biochim. Biophys. Acta, 2002, 1556, 21.

    Article  CAS  PubMed  Google Scholar 

  36. M. Germano, A. Y. Shkuropatov, H. Permentier, R. de Wijn, A. J. Hoff, V. A. Shuvalov, H. J. van Gorkom, Pigment Organization and Their Interactions in Reaction Centers of Photosystem II: Optical Spectroscopy at 6 K of Reaction Centers with Modified Pheophytin Composition, Biochemistry, 2001, 40, 11472.

    Article  CAS  PubMed  Google Scholar 

  37. B. Gall, A. Zehetner, A. Scherz and H. Scheer, Modification of Pigment Composition in the Isolated Reaction Center of Photosystem II, FEBS Lett., 1998, 434, 88.

    Article  CAS  PubMed  Google Scholar 

  38. J. L. Hughes, B. J. Prince, S. P. Årsköld, P. J. Smith, R. J. Pace, H. Riesen and E. Krausz, The Native Reaction Centre of Photosystem II: A New Paradigm for P680, Aust. J. Chem., 2004, 57, 1179.

    Article  CAS  Google Scholar 

  39. S. Peterson Årsköld, B. J. Prince, E. Krausz, P. J. Smith, R. J. Pace, R. Picorel and M. Seibert, Low-Temperature Spectroscopy of Fully Active PSII Cores. Comparisons with CP43, CP47, D1/D2/cyt b559 Fragments, J. Lumin., 2004, 108, 97.

    Article  CAS  Google Scholar 

  40. B. J. Prince, E. Krausz, S. Peterson Årsköld, P. J. Smith and R. J. Pace, Persistent Spectral Hole Burning in Oxygen-Evolving Photosystem II from Cyanobacteria and Higher Plants, J. Lumin., 2004, 108, 101.

    Article  CAS  Google Scholar 

  41. S. Peterson Årsköld, P. J. Smith, J.-R. Shen, R. J. Pace and E. Krausz, Key Cofactors of Photosystem II Cores from Four Organisms Identified by 1.7 K Absorption, CD and MCD, Photosynth. Res., 2005, in press.

    Google Scholar 

  42. P. Faller, A. Pascal and A. W. Rutherford, ß-Carotene Redox Reactions in Photosystem II: Electron Transfer Pathway, Biochemistry, 2001, 40, 6431.

    Article  CAS  PubMed  Google Scholar 

  43. J. Hanley, Y. Deligiannakis, A. Pascal, P. Faller and A. W. Rutherford, Carotenoid Oxidation in Photosystem II, Biochemistry, 1999, 38, 8189.

    Article  CAS  PubMed  Google Scholar 

  44. R. Stranger, L. Dubicki and E. Krausz, Magneto-Optical Investigation of the Exchange-Coupled Dimer Cs3Mo2Br9, Inorg. Chem., 1996, 35, 4218.

    Article  CAS  PubMed  Google Scholar 

  45. M.-L. Groot, R. N. Frese, F. L. de Weerd, K. Bromek and A. Pettersson, Spectroscopic Properties of the CP43 Core Antenna Protein of Photosystem II, Biophys. J., 1999, 77, 3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J. L. Hughes, B. J. Prince, S. Peterson Årsköld, E. Krausz, R. J. Pace, R. Picorel and M. Seibert, Photo-Conversion of Chlorophylls in Higher-Plant CP43 Characterized by Persistent Spectral Hole-Burning at 1.7 K, J. Lumin., 2004, 108, 131.

    Article  CAS  Google Scholar 

  47. F. L. de Weerd, I. H. M. van Stokkum, H. van Amerongen, J. P. Dekker, R. van Grondelle, Pathways for Energy Transfer in the Core Light-Harvesting Complexes CP43 and CP47 of Photosystem II, Biophys. J., 2002, 82, 1586.

    Article  PubMed  PubMed Central  Google Scholar 

  48. T. Nozawa, M. Kobayashi, Z. Y. Wang, S. Itoh, M. Iwaki, M. Mimuro and K. Satoh, Magnetic Circular Dichroism Investigation on Chromophores in Reaction Centres of Photosystem I and II of Green Plant Photosynthesis, Spectrochim. Acta, 1995, 51A, 125.

    Article  CAS  Google Scholar 

  49. M. Mimuro, M. Kobayashi, K. Shimada, K. Uezono and T. Nozawa, Magnetic Circular Dichroism Properties of Reaction Centre Complexes Isolated from the Zinc-Bacteriochlorophyll a-containing Bacterium Acidiphilium rubrum, Biochemistry, 2000, 39, 4020.

    Article  CAS  PubMed  Google Scholar 

  50. J. L. Hughes, R. J. Pace and E. Krausz, The Exciton Contribution to the Faraday B term MCD of Molecular Dimers, Chem. Phys. Lett., 2004, 385, 116.

    Article  CAS  Google Scholar 

  51. M. Umetsu, Z.-Y. Wang, M. Kobayashi and T. Nozawa, Interaction of Photosynthetic Pigments with Various Organic Solvents. Magnetic Circular Dichroism Approach and Application to Chlorosomes, Biochim. Biophys. Acta, 1999, 1410, 19.

    Article  CAS  PubMed  Google Scholar 

  52. S. Peterson Årsköld, J. Ström, J. F. Allen and E. Krausz, Low-Temperature Absorption and Magnetic Circular Dichroism of the Four Haems of the Chloroplast Cytochrome b6f, in the conference proceedings of PS2004: 13th International Congress of Photosynthesis, Montreal, Canada, 2004, Allen Press.

    Google Scholar 

  53. C. Houssier and K. Sauer, Circular Dichriosm and Magnetic Circular Dichroism of the Chlorophyll and Protochlorophyll Pigments, J. Am. Chem. Soc., 1970, 92, 779.

    Article  CAS  Google Scholar 

  54. F. T. H. den Hartog, F. Vacha, A. J. Lock, J. Barber, J. P. Dekker, S. Völker, Comparison of the Excited-State Dynamics of Five- and Six-Chlorophyll Photosystem II Reaction Center Complexes, J. Phys. Chem. B, 1998, 102, 9174.

    Article  Google Scholar 

  55. M. Alfonso, G. Montoya, R. Cases, R. Rodríguez and R. Picorel, Core Antenna Complexes, CP43 and CP47, of Higher Plant Photosystem II. Spectral Properties, Pigment Stoichiometry, and Amino Acid Composition, Biochemistry, 1994, 33, 10494.

    Article  CAS  PubMed  Google Scholar 

  56. H. van Gorkom, Identification of the Reduced Primary Electron Acceptor of Photosystem II as a Bound Semiquinone Anion, Biochim. Biophys. Acta, 1974, 347, 439.

    Article  PubMed  Google Scholar 

  57. W. L. Butler and S. Okayama, The Photoreduction of C-550 in Chloroplasts and its Inhibition by Lipase, Biochim. Biophys. Acta, 1971, 245, 237.

    Article  CAS  PubMed  Google Scholar 

  58. S. Völker, Spectral Hole-Burning in Crystalline and Amorphous Organic Solids. Optical Relaxation Processes at Low Temperature, in Relaxation Processes in Molecular Excited States, ed. J. Fünfschilling, Kluwer Academic Publishers, Dordrecht, Boston, London, 1989, p. 113.

    Chapter  Google Scholar 

  59. Persistent Spectral Hole-Burning: Science and Applications, ed. W. E. Moerner, Springer-Verlag, Berlin, Heidelberg, 1988, p. 315.

    Google Scholar 

  60. E. Krausz and H. Riesen, Laser Spectroscopy, in Inorganic Electronic Structure and Spectrosopy, ed. E. I. Solomon and A. B. P. Lever, Wiley-Interscience, New York, 1999, p. 307.

    Google Scholar 

  61. T. M. H. Creemers and S. Völker, Dynamics of Glasses and Proteins Probed by Time-Resolved Hole Burning, in Shpol’skii Spectroscopy and Other Site-Selection Methods, ed. C. Gooijer, F. Ariese and J. W. Hofstraat, Wiley-Interscience, New York, 2000, p. 273.

    Google Scholar 

  62. J. L. Hughes, E. Krausz, P. J. Smith, R. J. Pace and H. Riesen, Probing The Lowest Energy Chlorophyll a States of Photosystem II via Selective Spectroscopy: New Insights on P680, Photosynth. Res., 2005, in press.

    Google Scholar 

  63. E. Krausz, J. L. Hughes, P. J. Smith, R. J. Pace and S. P. Årsköld, Assignment of the Low-Temperature Fluorescence in Oxygen-Evolving Photosystem II, Photosynth. Res., 2005, in press.

    Google Scholar 

  64. S. Vasil’ev, P. Orth, A. Zouni, T. G. Owens and D. Bruce, Excited-State Dynamics in Photosystem II: Insights From the X-ray Crystal Structure, Proc. Natl. Acad. Sci. USA, 2001, 98, 8602.

    Article  PubMed  PubMed Central  Google Scholar 

  65. G. Shen, W. F. J. Vermaas, Mutation of Chlorophyll Ligands in the Chlorophyll-Binding CP47 Protein as Studied in a Synechocystis sp. 6803 Photosystem I-less Background, Biochemistry, 1994, 33, 7379.

    Article  CAS  PubMed  Google Scholar 

  66. G. Shen, J. J. Eaton-Rye, W. F. J. Vermaas, Mutation of Histidine Residues in CP47 Leads to Destabilization of the Photosystem II Complex and to Impairment of Light Energy Transfer, Biochemistry, 1993, 32, 5109.

    Article  CAS  PubMed  Google Scholar 

  67. E. G. Andrizhiyevskaya, D. Frolov, R. van Grondelle and J. P. Dekker, On the role of the CP47 core antenna in the energy transfer and trapping dynamics of Photosystem II, Phys. Chem. Chem. Phys., 2004, 6, 4810.

    Article  CAS  Google Scholar 

  68. R. J. van Dorssen, J. J. Plijter, J. P. Dekker, A. den Ouden, J. Amesz, H. J. van Gorkom, Spectroscopic Properties of Chloroplast Grana Membranes and of the Core of Photosystem II, Biochim. Biophys. Acta, 1987, 890, 134.

    Article  Google Scholar 

  69. J. P. Dekker, A. Hassoldt, Å. Pettersson, H. van Roon, M.-L. Groot and R. van Grondelle, On the Nature of the F695 and F685 Emission of Photosystem II, in Photosynthesis: From Light to Biosphere, ed. P. Mathis, Kluwer Academic Publishers, Dordrecht, 1995, p. 53.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmars Krausz.

Additional information

Presented at the 14th International Congress on Photobiology, at Jungmoon, Jeju Island, South Korea, 10th-15th June 2004.

Electronic supplementary information (ESI) available: The figures in colour. See http://dx.doi.org/10.1039/b41790

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krausz, E., Hughes, J.L., Smith, P. et al. Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Photochem Photobiol Sci 4, 744–753 (2005). https://doi.org/10.1039/b417905f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b417905f

Navigation