Skip to main content
Log in

Dynamics of Re(2,2′-bipyridine)(CO)3Cl MLCT formation and decay after picosecond pulsed X-ray excitation and femtosecond UV excitation

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The dynamics of Re(2,2′-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system’s time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mozumunder, Fundamentals of Radiation Chemistry, Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 1999, p. 361.

    Book  Google Scholar 

  2. A. Barkatt and W. Sousanpour, Gamma radiolysis of aqueous media and its effects on the leaching processes of nuclear waste disposal materials, Nucl. Technol., 1983, 60, 2, 218–227.

    Article  CAS  Google Scholar 

  3. S. Sunder and H. Christensen, Gamma radiolysis of water solutions relevant to the nuclear-fuel waste management program, Nucl. Technol., 1993, 104, 3, 403–417.

    Article  CAS  Google Scholar 

  4. P. A. Rodnyi, Progress in fast scintillators, Radiat. Meas., 2001, 33, 605–614.

    Article  CAS  Google Scholar 

  5. W. W. Moses and S. E. Derenzo, Prospects for time-of-flight PET using LSO scintillator, IEEE Trans. Nucl. Sci., 1999, 46, 474–478.

    Article  CAS  Google Scholar 

  6. G. Knoll, Radiation Detection and Measurement, Wiley, New York, 3rd edn., 1999.

    Google Scholar 

  7. K. Kleinknecht, Detectors for Particle Radiation, 2nd edn., Cambridge University Press, Cambridge, UK, 1998.

    Google Scholar 

  8. E. Garcia Villora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura and T. Fukuda, Luminescence of undoped β-Ga2O3 single crystals excited by picosecond X-ray and sub-picosecond UV pulses, Solid State Commun., 2003, 127, 385–388.

    Article  CAS  Google Scholar 

  9. K. Hatanaka, T. Miura, H. Odaka, H. Ono and H. Fukumura, Various methods for X-ray pulse generation using a femtosecond laser and their potential for time-resolved X-ray analyses, Bunseki Kagaku, 2003, 52, 6, 373–381.

    Article  CAS  Google Scholar 

  10. S. E. Derenzo, W. W. Moses, S. C. Blankespoor, M. Ito and K. Oba, Design of a pulsed X-ray system for fluorescent lifetime measurements with a timing accuracy of 109 ps, IEEE Trans. Nucl. Sci., 1994, 41, 3, 629–631.

    Article  CAS  Google Scholar 

  11. S. C. Blankespoor, S. E. Derenzo, W. W. Moses, C. S. Rossington, M. Ito and K. Oba, Characterization of a pulsed X-ray source for fluorescent lifetime measurements, IEEE Trans. Nucl. Sci., 1994, 41, 4, 698–702.

    Article  CAS  Google Scholar 

  12. L. Papadopoulos, Rise time of scintillation emission in inorganic and organic scintillators, Nucl. Instrum. Methods Phys. Res., Sect. A, 1997, 401, 322–328.

    Article  CAS  Google Scholar 

  13. D. L. Horrocks, High-resolution scintillation spectra obtained with nanosecond pulses of 3 MeV electrons, Photochem. Photobiol., 1972, 15, 2, 239–239.

    Article  CAS  Google Scholar 

  14. G. Porter and J. W. Boag, Flash photolysis and pulsed radiolysis, Chem. Ind. (London), 1964, 21, 887–887.

    Google Scholar 

  15. G. Scholes, M. Simic, G. E. Adams, J. W. Boag and B. D. Michael, Pulsed radiolysis of cyclohexane solutions - evidence for reactions of electrons, Nature, 1964, 204, 496, 1187–1187.

    Article  CAS  Google Scholar 

  16. C. H. Marshall, Pulsed radiolysis and flash spectroscopy studies on amino acid solutions, Phys. Med. Biol., 1966, 11, 1, 177–177.

    Google Scholar 

  17. A. Mozumunder, Fundamentals of Radiation Chemistry, Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 1999, pp. 156, 159 and 160.

    Google Scholar 

  18. V. A. Pustovarov, A. L. Krymov and E. I. Zinin, Time resolved luminescence of scintillation crystals under excitation by high-intensity synchrotron radiation, Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, 359, 336–338.

    Article  CAS  Google Scholar 

  19. V. A. Pustovarov, A. L. Krymov and B. V. Shulgin, Some peculiarities of the luminescence of inorganic scintillators under excitation by high-intensity synchroton radiation, Rev. Sci. Instrum., 1992, 63, 6, 3521–3522.

    Article  CAS  Google Scholar 

  20. N. Y. Kirikova, V. E. Klimenko, V. A. Kozlov, V. N. Makhov, N. M. Khaidukov and T. V. Uvarova, Cross luminescence of several complex fluorides excited by synchrotron-radiation, Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, 359, 351–353.

    Article  CAS  Google Scholar 

  21. Von H. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys., 1930, 5, 325–400.

    Article  CAS  Google Scholar 

  22. A. J. Lees, Luminescence properties of organometalic complexes, Chem. Rev., 1987, 87, 711–743.

    Article  CAS  Google Scholar 

  23. M. S. Wrighton and D. L. Morse, The nature of the lowest excited state in tricarbonyl-1,10-phenantholinerhenium(i) and related complexes, J. Am. Chem. Soc., 1974, 96, 998–1003.

    Article  CAS  Google Scholar 

  24. J. V. Casper and T. J. Meyer, Application of the energy gap law to nonradiative, excited-state decay, J. Phys. Chem., 1983, 87, 952–957.

    Article  Google Scholar 

  25. W. K. Smothers and M. S. Wrighton, Raman-spectroscopy of electronic excited organometallic complexes - a comparison of the metal to 2,2′-bipyridine charge-transfer state of FAC-(2,2′-bipyridine) tricarbonylhalorhenium and tris(2,2′-bipyridine) ruthenium(ii), J. Am. Chem. Soc., 1983, 105, 1067–1069.

    Article  CAS  Google Scholar 

  26. K. Kalyanasundaram, Luminescence and redox reactions of the metal-to-ligand charge-transfer excited state of tricarbonylchloro-(polypyridyl) rhenium(i) complexes, J. Chem. Soc., Faraday Trans., 1986, 2, 82, 2401–2415.

    Article  Google Scholar 

  27. L. A. Worl, R. Duesing, P. Chen, L. D. Ciana and T. J. Meyer, Photophysical properties of polypyridyl carbonyl complexes of rhenium(i), J. Chem. Soc., Dalton Trans., 1991, 849–858.

    Google Scholar 

  28. M. W. George, F. P. A. Johnson, J. R. Westwell, P. M. Hodges and J. J. Turner, Excited state properties and reactivity of [ReCl(CO)3(2,2′-bipy)] (2,2′-bipy =2,2′-bipyridyl) studied by time-resolved infrared spectroscopy, J. Chem. Soc., Dalton Trans., 1993, 2977–2979.

    Google Scholar 

  29. D. R. Striplin and G. A. Crosby, Nature of the emitting 3MLCT manifold of rhenium(i) (diimine) (CO)3Cl complexes, Chem. Phys. Lett., 1994, 221, 426–430.

    Article  CAS  Google Scholar 

  30. C. W. E. Van Eijk, Cross-luminescence, J. Lumin., 1994, 60/61, 930–935.

    Article  Google Scholar 

  31. K-C. Tang, K. L. Liu, I-C. Chen, Rapid intersystem crossing in highly phosphorescent iridium complexes, Chem. Phys. Lett., 2004, 386, 437–441.

    Article  CAS  Google Scholar 

  32. A. Vlcek, Jr., The life and times of excited states of organometallic and coordination compounds, Coord. Chem. Rev., 2000, 200–202, 933–977.

    Article  Google Scholar 

  33. P. Kubelka and F. Munk, Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys., 1931, 12, 593–601.

    Google Scholar 

  34. M. Ichikawa, H. Fukumura and H. Masuhara, Ultrafast electron-transfer and recombination processes on copper phthalocynine solid/water interface as revealed by picosecond regular reflection spectroscopy, J. Phys. Chem., 1995, 99, 12072–12075.

    Article  CAS  Google Scholar 

  35. D. Liljequist, A simple calculation of inelastic mean free-path and stopping power for 50 eV–50 keV electrons in solids, J. Phys. D: Appl. Phys., 1983, 16, 1567–1582.

    Article  CAS  Google Scholar 

  36. F. Salvat and J. D. Martinez, R Mayol and J Parellada, A simple model fro electron-scattering-inelastic-collisions, J. Phys. D: Appl. Phys., 1985, 18, 299–315.

    Article  CAS  Google Scholar 

  37. B. L. Henke, E. M. Gullikson and J. C. Davis, X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92, Atomic Data and Nuclear Data Tables, 1993, 54, 2, 181–342.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fukumura.

Additional information

Dedicated to Professor Hiroshi Masuhara on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Odaka, H., Ono, H. et al. Dynamics of Re(2,2′-bipyridine)(CO)3Cl MLCT formation and decay after picosecond pulsed X-ray excitation and femtosecond UV excitation. Photochem Photobiol Sci 4, 113–117 (2005). https://doi.org/10.1039/b409936b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b409936b

Navigation