Skip to main content
Log in

Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The light-induced singlet oxygen production and antifungal activity of phenylphenalenone phytoalexins isolated from infected banana plants (Musa acuminata) are reported. Upon absorption of light energy all studied phenylphenalenones sensitise the production of singlet oxygen in polar and non-polar media. Antifungal activity of these compounds towards Fusarium oxysporum is enhanced in the presence of light. These results, together with the correlation of IC50 values under illumination with the quantum yield of singlet oxygen production and the enhancing effect of D2O on the antifungal activity, suggest the intermediacy of singlet oxygen produced by electronic excitation of the phenylphenalenone phytoalexins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Dangl, J. D. G. Jones, Plant pathogens and integrated defence responses to infection, Nature, 2001, 411, 826–833.

    Article  CAS  PubMed  Google Scholar 

  2. P. M. Waterhouse, M.-B. Wang, T. Lough, Gene silencing as an adaptive defence against viruses, Nature, 2001, 411, 834–842.

    Article  CAS  PubMed  Google Scholar 

  3. R. A. Dixon, Natural products and plant disease resistance, Nature, 2001, 411, 843–847.

    Article  CAS  PubMed  Google Scholar 

  4. E. Lam, N. Kato, M. Lawton, Programmed cell death, mitochondria and the plant hypersensitive response, Nature, 2001, 411, 848–853.

    Article  CAS  PubMed  Google Scholar 

  5. E. E. Farmer, Surface-to-air signals, Nature, 2001, 411, 854–856.

    Article  CAS  PubMed  Google Scholar 

  6. M. D. Rauscher, Co-evolution and plant resistance to natural enemies, Nature, 2001, 411, 857–864.

    Article  Google Scholar 

  7. M. H. Stuiver, J. H. H. V. Custers, Engineering disease resistance in plants, Nature, 2001, 411, 865–868.

    Article  CAS  PubMed  Google Scholar 

  8. H. D. van Etten, J. W. Mansfield, J. A. Bailey, E. E. Farmer, Two classes of plant antibiotics: phytoalexins versus phytoanticipins, Plant Cell, 1994, 1191–1192.

    Google Scholar 

  9. K. R. Downum, Light activated plant defence, New.Phytol., 1992, 122, 401–420.

    Article  CAS  PubMed  Google Scholar 

  10. M. Berenbaum, Phototoxicity of plant secondary metabolites: insect and mammalian perspectives, Arch. Insect Biochem Physiol., 1995, 29, 119–134.

    Article  CAS  PubMed  Google Scholar 

  11. K. R. Downum, J. Wen, The occurrence of photosensitizers among higher plants, ACS Symp. Ser., 1995, 616, Light-Activated Pest Control 135–143.

    Article  CAS  Google Scholar 

  12. G. H. N. Towers, J. E. Page, J. B. Hudson, Light-mediated biological activities of natural products from plants and fungi, Curr. Org. Chem., 1997, 1, 395–414.

    CAS  Google Scholar 

  13. J. P. Knox, A. D. Dodge, Singlet oxygen in plants, Phytochemistry, 1985, 24, 889–896.

    Article  CAS  Google Scholar 

  14. M. R. Berenbaum, R. A. Larson, Flux of singlet oxygen from leaves of phototoxic plants, Experientia, 1988, 44, 1030–1032.

    Article  CAS  Google Scholar 

  15. J. G. Luis, F. Echeverri, W. Quiñones, I. Brito, M. López, F. Torres, G. Cardona, Z. Aguilar, C. Peláez, M. Rojas, Irenolone and emelonone: two new types of phytoalexin from Musa paradisiaca, J. Org. Chem., 1993, 58, 4306–4308.

    Article  CAS  Google Scholar 

  16. J. G. Luis, W. Q. Fletcher, F. Echeverri, T. A. Grillo, Phenalenone-type phytoalexins form Musa acuminata. Synthesis of 4-phenyl-phenalenones, Tetrahedron, 1994, 50, 10963–10970.

    Article  CAS  Google Scholar 

  17. J. G. Luis, W. Q. Fletcher, F. Echeverri, T. Abad, M. P. Kishi, A. Perales, New Phenalenone-type phytoalexins from Musa acuminata (colla AAA) grand nain, Nat. Prod. Lett., 1995, 6, 23–30.

    Article  CAS  Google Scholar 

  18. J. G. Luis, W. Quiñones, F. Echeverri, T. A. Grillo, M. P. Kishi, F. Garcia-Garcia, F. Torres, G. Cardona, Musanolones: four 9-phenylphenalenones from rhizomes of Musa acuminata, Phytochemistry, 1996, 41, 753–757.

    Article  CAS  Google Scholar 

  19. J. G. Luis, E. H. Lahlou, L. S. Andres, F. Echeverri, W. Q. Fletcher, Phenylphenalenonic phytoanticipins. New acenaphthylene and dimeric phenylphenalenones from the resistant Musa selected hybrid SH-3481, Tetrahedron, 1997, 53, 8249–8256.

    Article  CAS  Google Scholar 

  20. T. Kamo, N. Kato, N. Hirai, M. Tsuda, D. Fujioka, H. Ohigashi, Phenylphenalenone-type phytoalexins from unripe Bungulan banana fruit, Biosci. Biotechnol. Biochem., 1998, 62, 95–101.

    Article  CAS  PubMed  Google Scholar 

  21. N. Hirai, H. Ishida, K. Koshimizu, A phenalenone-type phytoalexin from Musa acuminata, Phytochemistry, 1994, 37, 383–385.

    Article  CAS  Google Scholar 

  22. W. Quiñones, G. Escobar, F. Echeverri, F. Torres, Y. Rosero, V. Arango, G. Cardona, A. Gallego, Synthesis and antifungal activity of Musa phytoalexins and structural analogs, Molecules, 2000, 5, 974–980.

    Article  Google Scholar 

  23. J. G. Luis, W. Q. Fletcher, F. Echeverri, T. A. Grillo, A. Perales, J. A. González, Intermediates with biosynthetic implications in de novo production of phenyl-phenalenone-type phytoalexins by Musa acuminata. Revised structure of emenolone, Tetrahedron, 1995, 51, 4117–4130.

    Article  CAS  Google Scholar 

  24. R. H. Binks, J. R. Greenham, J. G. Luis, S. R. Gowen, Phytoalexin production in Musa acuminata AA ‘Pisang Jari Buaya’ Group Var. Pisang Sipulu after invasion from plant parasitic nematodes, Phytochemistry, 1997, 45, 47–49.

    Article  CAS  Google Scholar 

  25. T. Kamo, N. Hirai, K. Iwami, D. Fujioka, H. Ohigashi, New phenylphenalenones from banana fruit, Tetrahedron, 2001, 57, 7649–7656.

    Article  CAS  Google Scholar 

  26. E. Oliveros, P. Suardi-Muraseco, T. Aminian-Saghafi, A. M. Braun, H.-J. Hansen, 1H-Phenalen-1-one: Photophysical properties and singlet-oxygen production, Helv. Chim. Acta, 1991, 74, 79–90.

    Article  CAS  Google Scholar 

  27. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization, J. Photochem. Photobiol. A: Chem., 1994, 79, 11–17.

    Article  CAS  Google Scholar 

  28. C. Martí, O. Jürgens, O. Cuenca, M. Casals, S. Nonell, Aromatic ketones as standards for singlet molecular oxygen O2(1Δg) photosensitization. Time-resolved photoacoustic and NIR emission studies, J. Photochem. Photobiol. A: Chem., 1996, 97, 11–18.

    Article  Google Scholar 

  29. M. P. De Mello, A. L. Nascimento, C. Bohne, G. Cilento, Excitation of chloroplasts in Euglena gracilis in the absence of light, Photochem. Photobiol., 1988, 47, 457–461.

    Article  Google Scholar 

  30. G. Cilento, Generation of electronically excited triplet species in biochemical systems, Pure Appl. Chem., 1984, 56, 1179–1190.

    Article  CAS  Google Scholar 

  31. R. G. Cooke, J. M. Edwards, Naturally occurring phenalenones and related compounds, Prog. Chem. Org. Nat. Prod., 1981, 40, 153–190.

    CAS  Google Scholar 

  32. J. M. Kornfeld, J. M. Edwards, An investigation of the photodynamic pigments in extracts of Lachnantes tinctoria, Biochim. Biophys. Acta, 1972, 286, 88–90.

    Article  CAS  PubMed  Google Scholar 

  33. C. Darwin, The Origin of Species, Encyclopaedia Britannica, Chicago, IL, 6th edn., 1952.

    Google Scholar 

  34. D. F. Eaton, in Handbook of Organic Photochemistry, ed. J. C. Scaiano. CRC Press, Boca Raton, FL, 1989, vol. 1, pp. 231–239.

    Google Scholar 

  35. M. Resende, J. Flood, J. Ramsden, M. Beale, R. Cooper, Novel phytoalexins including elemental sulfur in the resistance of cocoa (Theobrama cacao L.) to verticillium wilt (Verticillium dahliae kleb.), Physiol. Mol. Plant Pathol., 1996, 48, 347–359.

    Article  CAS  Google Scholar 

  36. P. Sarig, Y. Zutkhi, A. Monjauze, N. Lisker, R. Ben-Arie, Phytoalexin elicitation in grape berries and their susceptibility to Rhyzopus stolonifer, Physiol. Mol. Plant Pathol., 1997, 50, 337–347.

    Article  CAS  Google Scholar 

  37. G. Chilosi, C. Caruso, C. Caporale, C. Leonardi, L. Bertini, A. Buzi, M. Nobile, P. Magro, V. Buonocore, Antifungal activity of a Bowman-birk-like trypsin inhibitor from wheat kernel, J. Phytopathol., 2000, 148, 477–481.

    Article  CAS  Google Scholar 

  38. J. Ritter, H.-U. Borst, T. Lindner, M. Hauser, S. Brosig, K. Bredereck, U. E. Steiner, D. Kühn, J. Kelemen, H. E. A. Kramer, Substituent effects on triplet yields in aminoanthraquinones: radiationless deactivation via intermolecular and intramolecular hydrogen bonding, J. Photochem. Photobiol. A: Chem., 1988, 41, 227–244.

    Article  CAS  Google Scholar 

  39. M. L. Pierce, E. C. Cover, P. E. Richardson, V. E. Scholes, M. Essenberg, Adequacy of cellular phytoalexin concentrations in hypersensitively responding cotton leaves, Physiol. Mol. Plant Pathol., 1996, 48, 305–324.

    Article  CAS  Google Scholar 

  40. S. Lo, I. Weiergang, C. Bonham, J. Hipskind, K. Wood, R. Nicholson, Phytoalexin accumulation in sorghum: identification of a methyl ether of luteonilidin, Physiol. Mol. Plant Pathol., 1996, 49, 21–31.

    Article  CAS  Google Scholar 

  41. R. J. Grayer, J. B. Harborne, A survey for antifungal compounds from higher plants, Phytochemistry, 1994, 37, 19–42.

    Article  CAS  Google Scholar 

  42. C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  43. J. Bakker, F. J. Gommers, L. Smits, A. Fuchs, F. W. de Vries, Photoactivation of the nematicidal compound α-terthienyl from roots of marigolds (Tagetes species), Photochem. Photobiol., 1983, 38, 323–329.

    Article  CAS  Google Scholar 

  44. T. J. Sun, U. Melcher, M. Essenberg, Inactivation of cauliflower mosaic virus by a photoactivatable cotton phytoalexin, Physiol. Mol. Plant Pathol., 1988, 33, 115–126.

    Article  CAS  Google Scholar 

  45. E. Kourany, J. T. Arnason, E. Schneider, Accumulation of phototoxic thiophenes in Tagetes erecta (Asteraceae) elicited by Fusarium oxysporum, Physiol. Mol. Plant Pathol., 1988, 33, 287–297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Nonell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzaro, A., Corominas, M., Martí, C. et al. Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins. Photochem Photobiol Sci 3, 706–710 (2004). https://doi.org/10.1039/b401294a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b401294a

Navigation