Issue 14, 2004

Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation

Abstract

The gold crystal-forming E. coli polypeptide sequence, MHGKTQATSGTIQS, is one of several polypeptide sequences that interacts with gold interfaces and catalyzes the formation of Au crystals in solution, with nucleated Au crystals preferentially featuring the (111) interface. To date, there have been no experimental studies which explore the structure of E. coli-expressed gold binding proteins or the binding of Au(III) ions by these polypeptides. In this present report, multidisciplinary approaches were applied to the 42-AA gold binding protein-1 (GBP-1/42) and to a model polypeptide representing the 14-AA integral repeat of this protein (GBP-1/14). CD and NMR spectroscopy indicate that neither the integral repeat nor the GBP-1 protein adopt folded structures in the apo form or in the presence of Au(III) ions; the integral repeat adopts a random coil-extended structure conformation [i.e., (MHGKTQA)random coil–(TSGTIQS)extended] and the GBP-1 protein appears to be similarly structured. These features are inconsistent with a templating structure. Mass spectrometry experiments indicate that the integral repeat binds up to two Au(III) ions per polypeptide molecule, and 1H NMR ROESY experiments pinpoint the interaction of Au(III) within two sites: the -QAT- region of the integral repeat MHGKTQATSGTIQS sequence, and, at the negatively charged C-terminus of this sequence. Collectively, our findings support the hypothesis that GBP-1 does not catalyze Au crystal formation via a templating mechanism; rather, the open, unfolded structure of this protein, combined with the presence of accessible proton donor/acceptor amino acids (Ser, Thr, Lys, Gln, His) most likely play a role in Au crystal formation in solution and may also explain the interactive nature of this polypeptide with Au interfaces.

Graphical abstract: Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation

Article information

Article type
Paper
Submitted
27 Jan 2004
Accepted
01 Apr 2004
First published
22 Apr 2004

J. Mater. Chem., 2004,14, 2325-2332

Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation

J. L. Kulp III, M. Sarikaya and J. Spencer Evans, J. Mater. Chem., 2004, 14, 2325 DOI: 10.1039/B401260G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements