Skip to main content
Log in

Photodynamic activity of monocationic and non-charged methoxyphenylporphyrin derivatives in homogeneous and biological media

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel 5-[4-(trimethylammonium)phenyl]-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin iodide (2) has been synthesized. A positive charge was incorporated at a peripheral position to increase the amphiphilic character of the structure. The photodynamic effect of the cationic porphyrin 2 was compared with that of non-charged 5-(4-aminophenyl)-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin (1), both in a homogeneous medium bearing photooxidizable substrates and in vitro on the Hep-2 human larynx carcinoma cell line. Absorption and fluorescence spectroscopic studies in different media show that 2 is essentially unaggregated in solution, and also in human cells. The singlet molecular oxygen, O2(1Δg), production was evaluated using 9,10-dimethylanthracene in N,N-dimethylformamide, yielding ΦΔ values of ∼0.66 for both porphyrins. The addition of β-carotene suppresses the O2(1Δg)-mediated photooxidation. l-Tryptophan and guanosine 5′-monophosphate were used as biological substrate models. Porphyrin 2 sensitizes the decomposition of both compounds faster than does 1. In the biological medium, no dark cytotoxicity was observed, even though a high porphyrin concentration (10 µM) and a long incubation time (24 h) were employed. Cell treatments were performed with 5 µM of porphyrin for 24 h. Under these conditions, the uptake of porphyrin 2 into Hep-2 was about 3 times higher than that of 1. Cell survival after irradiation with visible light was dependent upon both the light exposure level and intracellular sensitizer concentration. Thus, a higher photocytotoxic effect was found for porphyrin 2 in comparison to 1. These results show that the amphiphilic monocationic porphyrin 2 could be a promising model for phototherapeutic agents with potential applications in tumor cell inactivation by photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Milgrom and F. O’Neill, Porphyrins, in The Chemistry of Natural Products, ed. R. H. Thomson, Blackie Academic & Professional, London, 1993, ch. 8, pp. 329–376.

  2. L. I. Grosseweiner, Photodynamic therapy, in The Science of Phototherapy, CRC Press, London, 1994, ch. 8, pp. 139–155.

    Google Scholar 

  3. J. S. McCaughan Jr. Photodynamic therapy. A review, Drugs Aging, 1999, 15, 49–68.

    Article  CAS  PubMed  Google Scholar 

  4. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1992, 55, 145–157.

    Article  CAS  PubMed  Google Scholar 

  5. L. C. Penning and T. M. Dubbelman, Fundamentals of photodynamic therapy: cellular and biochemical aspects, Anti-Cancer Drugs, 1994, 5, 139–146.

    Article  CAS  PubMed  Google Scholar 

  6. G. Jori, L. Schindl, A. Schindl and L. Polo, Novel approaches towards a detailed control of the mechanism and efficiency of photosensitized process in vivo, J. Photochem. Photobiol., A, 1996, 102, 101–107.

    Article  CAS  Google Scholar 

  7. R. Bonnett, Chemical Aspects of Photodynamic Therapy, Gordon and Breach Science Publishers, Amsterdam, 2000.

    Book  Google Scholar 

  8. R. Ackroyd, C. Kelty, N. Brown and M. Reed, The history of photodetection and photodynamic therapy, Photochem. Photobiol., 2001, 74, 656–669.

    Article  CAS  PubMed  Google Scholar 

  9. A. Villanueva The cationic meso-substituted porphyrins: an interesting group of photosensitizer, J. Photochem. Photobiol., B, 1993, 18, 295–298.

    Article  CAS  Google Scholar 

  10. H. Ali, J. E. van Lier Metal complexes as photo- and radiosensitizers, Chem. Rev., 1999, 99, 2379–2450.

    Article  CAS  PubMed  Google Scholar 

  11. A. K. Haylett, F. I. McNair, D. McGarvey, N. J. F. Dodd, E. Forbes, T. G. Truscott and J. V. Moore, Singlet oxygen and superoxide characteristics of a series of novel asymmetric photosensitizers, Cancer Lett., 1997, 112, 233–238.

    Article  CAS  PubMed  Google Scholar 

  12. J.-L. Ravanat, J. Cadet, K. Araki, H. E. Toma, M. H. G. Medeiros, P. Di Mascio Supramolecular cationic tetraruthenated porphyrin and light-induced decomposition of 2′-deoxyguanosine predominantly via a singlet oxygen-mediated mechanism, Photochem. Photobiol., 1998, 68, 698–702.

    CAS  PubMed  Google Scholar 

  13. G. M. Garbo, V. H. Fingar, T. J. Wieman, E. B. Noakes III, P. S. Haydon, P. B. Cerrito, D. H. Kessel and A. R. Morgan, In vivo and in vitro photodynamic studies with benzochlorin iminium salts delivered by a lipid emulsion, Photochem. Photobiol., 1998, 68, 561–568.

    Article  CAS  PubMed  Google Scholar 

  14. P. Kubát, K. Lang, P. Anzenbacher Jr., K. Jursíková, V. Král and B. Ehrenberg, Interaction of novel cationic meso-tetraphenylporphyrins in the ground and excited states with DNA and nucleotides, J. Chem. Soc., Perkin Trans. 1, 2000, 933–941.

    Google Scholar 

  15. S. Mettath, B. R. Munson and R. K. Pandey, DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position, Bioconjugate Chem., 1999, 10, 94–102.

    Article  CAS  Google Scholar 

  16. A. Villanueva and G. Jori, Pharmacokinetic and tumour-photosensitizing properties of the cationic porphyrin meso-tetra(4N-methylpyridyl)porphine, Cancer Lett., 1993, 73, 59–64.

    Article  CAS  PubMed  Google Scholar 

  17. A. Villanueva, L. Caggiari, G. Jori and C. Milanesi, Morphological aspects of an experimental tumour photosensitized with a meso-substituted cationic porphyrin, J. Photochem. Photobiol., B, 1994, 23, 49–56.

    Article  CAS  Google Scholar 

  18. Y. Nitzan, H. Asquenazí Photoinactivation of Acinetobacter baumanni and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths, Curr. Microbiol., 2001, 42, 408–414.

    Article  CAS  PubMed  Google Scholar 

  19. K. Kassab, T. B. Amor, G. Jori and O. Coppellotti, Photosensitization of Colpoda inflata cysts by meso-substituted cationic porphyrins, Photochem. Photobiol. Sci., 2002, 1, 560–564.

    Article  CAS  PubMed  Google Scholar 

  20. M. La Penna, M. G. Alvarez, E. I. Yslas, V. Rivarola and E. N. Durantini, Characterization of photodynamic effects of meso-tetrakis(4-methoxyphenyl) porphyrin: biological consequences in a human carcinoma cell line, Dyes Pigm., 2001, 49, 75–82.

    Article  CAS  Google Scholar 

  21. I. Yslas, M. G. Alvarez, C. Marty, G. Mori, E. N. Durantini and V. Rivarola, Expression of Fas antigen and apoptosis caused by 5,10,15,20-tetra(4-methoxyphenyl)porphyrin (TMP) on carcinoma cells: implication for photodynamic therapy, Toxicology, 2000, 149, 69–74.

    Article  CAS  PubMed  Google Scholar 

  22. M. La Penna, M. G. Alvarez, E. I. Yslas, V. Rivarola and E. N. Durantini, Photodynamic activity of 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin on Hep-2 human carcinoma cell line: effect of light dose and wavelength range, Bioorg. Chem., 2001, 29, 130–139.

    Article  PubMed  CAS  Google Scholar 

  23. M. E. Milanesio, M. G. Alvarez, E. I. Yslas, C. D. Borsarelli, J. J. Silber, V. Rivarola, E. N. Durantini Photodynamic studies of metallo 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin: photochemical characterization and biological consequences in a human carcinoma cell line, Photochem. Photobiol., 2001, 74, 14–21.

    Article  CAS  PubMed  Google Scholar 

  24. E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore and D. Gust, Carotenoporphyrins as selective photodiagnostic agents for tumours, Br. J. Cancer, 1994, 69, 40–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, M. Neumann, H-D. Brauer and G. Jori, Part 2. meso-Tetraphenylporphyrin dimer derivatives as potential photosensitizer in photodynamic therapy, Photochem. Photobiol., 2000, 72, 217–225.

    Article  CAS  PubMed  Google Scholar 

  26. M. E. Milanesio, M. S. Moran, E. I. Yslas, M. G. Alvarez, V. Rivarola and E. N. Durantini, Synthesis and biological evaluation of methoxyphenyl porphyrin derivatives as potential photodynamic agents, Bioorg. Med. Chem., 2001, 9, 1943–1949.

    Article  CAS  PubMed  Google Scholar 

  27. A. Villanueva, E. N. Durantini, J. C. Stockert, S. Rello, R. Vidania, M. Cañete, A. Juarranz, R. Arranz and V. Rivarola, Photokilling of cultured tumour cells by the porphyrin derivative CF3, Anti-Cancer Drug Des., 2002, 16, 279–290.

    Google Scholar 

  28. R. W. Boyle and D. Dolphin, Structure and biodistribution relationships of photodynamic sensitizers, Photochem. Photobiol., 1996, 64, 469–485.

    Article  CAS  PubMed  Google Scholar 

  29. E. N. Durantini and J. J. Silber, Synthesis of 5-(4-acetamidophenyl)-10,15,20-tris(4-substituted phenyl) porphyrins using dipyrromethanes, Synth. Commun., 1999, 29, 3353–3368.

    Article  CAS  Google Scholar 

  30. E. N. Durantini Synthesis of meso-nitrophenyl porphyrins covalently linked to a polyphenylene chain bearing methoxy groups, J. Porphyrins Phthalocyanines, 2000, 4, 233–242.

    Article  CAS  Google Scholar 

  31. E. N. Durantini Synthesis of 5-(4-X-phenyl)-10,15,20-tris(substituted phenyl) porphyrins using dipyrromethanes, Molecules, 2001, 6, 533–539.

    Article  CAS  PubMed Central  Google Scholar 

  32. A. Weitemeyer, H. Kliesch, U. Michelsen, A. Hirth and D. Wöhrle, Unsymmetrically substituted porphyrazines, in Photodynamic Tumor Therapy, 2nd and 3rd Genaration Photosensitizers, ed. J. G. Moser, Harwood Academic Publishers, Amsterdam, 1998, ch.2.6, pp. 87–99.

  33. K. Driaf, R. Granet, P. Krausz, M. Kaouadji, F. Thomasson, A. J. Chulia, B. Verneuil, M. Spiro, J.-C. Blais and G. Bolbach, Synthesis of glycosylated cationic porphyrins as potential agents in photodynamic therapy, Can. J. Chem., 1996, 74, 1550–1563.

    Article  CAS  Google Scholar 

  34. J. N. Demas and G. A. Crosby, The measurement of photoluminescence quantum yields, J. Phys. Chem., 1971, 75, 991–1024.

    Article  Google Scholar 

  35. R. W. Redmond and J. N. Gamlin, A compilation of singlet yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  36. R. Schmidt and E. Afshari, Effect of solvents on the phosphorescence rate constant of singlet molecular oxygen (1Δg), J. Phys. Chem., 1990, 94, 4377–4378.

    Article  CAS  Google Scholar 

  37. J. D. Spikes Quantum yields, and kinetics of the photobleaching of hematoporphyrin, photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin, Photochem. Photobiol., 1992, 55, 792–808.

    Article  Google Scholar 

  38. L. Bezdetnaya, N. Zeghari, I. Belitchenko, M. Barberi-Heyob, J.-L. Merlin, A. Potapenko and F. Guillemin, Spectroscopic and biological testing of photobleaching of porphyrins in solutions, Photochem. Photobiol., 1996, 64, 382–386.

    Article  CAS  PubMed  Google Scholar 

  39. M. G. Alvarez, M. La Penna, E. I. Yslas, V. Rivarola and E. N. Durantini, Photodamaging effects of porphyrin in a human carcinoma cell line, Chem. Educator, 2000, 5, 24.

    Article  CAS  Google Scholar 

  40. K. M. Smith, General features of the structure and chemistry of porphyrin compounds, Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, 1975, ch. 1, pp. 20–27.

    Google Scholar 

  41. K. Kano, K. Fukuda, H. Wakami, R. Nishiyabu and R. F. Pasternack, Factor influencing self-aggregation tendencies of cationic porphyrins in aqueous solutions, J. Am. Chem. Soc., 2000, 122, 7494–7502.

    Article  CAS  Google Scholar 

  42. G. Kostenich, T. Babushkina, A. Lavi, Y. Langzam, Z. Malik, A. Orenstein and B. Ehrenberg, Photosensitization by the near-IR-absorbing photosensitizer lutetium texaphyrin: spectroscopic, in vitro and in vivo studies, J. Porphyrins Phthalocyanines, 1998, 2, 383–390.

    Article  CAS  Google Scholar 

  43. C. Hadjur, N. Lange, J. Rebstein, P. Monnier, H. van den Bergh, G. J. Wagnières Spectroscopic studies of photobleaching and photoproduct formation of meta(tetrahydroxyphenyl) chlorin (m-THPC) used in photodynamic therapy. The production of singlet oxygen by m-THPC, J. Photochem. Photobiol., B, 1998, 45, 170–178.

    Article  CAS  Google Scholar 

  44. M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. d’A. Rocha Gonsalves, L. G. Arnaut and S. J. Formosinho, Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies, Chem. Eur. J., 1998, 4, 2299–2307.

    Article  CAS  Google Scholar 

  45. J. Moan, K. Berg and V. Iani, Action spectra of dyes relevant for photodynamic therapy, in Photodynamic Tumor Therapy, 2nd and 3rd Genaration Photosensitizers, ed. J. G. Moser, Harwood Academic Publishers, Amsterdam, 1998, ch. 2.6, pp. 169–181.

    Google Scholar 

  46. C. D. Borsarelli, E. N. Durantini, N. A. García Singlet molecular oxygen-mediated photooxidation of nitrophenolic compounds in water-in-oil microemulsions, J. Chem. Soc., Perkin Trans. 2, 1996 2009–2013.

    Google Scholar 

  47. D. Gust, T. A. Moore, A. L. Moore, G. Jori and E. Reddi, The photochemistry of carotenoids, some photosynthetic and photomedical aspects, Ann. N. Y. Acad. Sci., 1993, 691, 32–47.

    Article  CAS  PubMed  Google Scholar 

  48. D. Baltschun, S. Beutner, K. Briviba, H.-D. Martin, J. Paust, M. Peters, S. Röver, H. Stahl, A. Steigel and F. Stenhorst, Singlet oxygen quenching abilities of carotenoid, Liebigs Ann. Chem., 19971887–1893.

    Google Scholar 

  49. H. D. Martin, C. Ruck, M. Schumidt, S. Sell, S. Beutner, B. Mayer and R. Walsh, Chemistry of carotenoid oxidation and free radical reactions, Pure Appl. Chem., 1999, 71, 2253–2262.

    Article  CAS  Google Scholar 

  50. M. A. Montenegro, M. A. Nazareno, E. N. Durantini and C. D. Borsarelli, Singlet molecular oxygen quenching ability of carotenoids in reverse-micelle membrane mimetic system, Photochem. Photobiol., 2002, 75, 353–361.

    Article  CAS  PubMed  Google Scholar 

  51. F. Wilkinson and J. G. Brummer, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution, J. Phys. Chem. Ref. Data, 1981, 10, 809–899.

    Article  CAS  Google Scholar 

  52. F. Fungo, L. Otero, C. D. Borsarelli, E. N. Durantini, J. J. Silber and L. Sereno, Photocurrent generation in thin SnO2 nanocrystalline semiconductor film electrodes from photoinduced charge separation state in porphyrin-C60 dyad, J. Phys. Chem. B, 2002, 106, 4070–4078.

    Article  CAS  Google Scholar 

  53. A. Segalla, C. Milanesi, G. Jori, H.-G. Capraro, U. Isele and K. Schieweck, CGP 55398, a liposomal Ge(IV) phthalocyanine bearing two axially ligated cholesterol moieties: a new potential agent for photodynamic therapy of tumours, Br. J. Cancer, 1994, 69, 817–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R. Jasuja, D. M. Jameson, C. K. Nishijo and R. W. Larsen, Singlet excited state dynamics of tetrakis(4-N-methylpyridyl)porphyrin associate with DNA nucleotides, J. Phys. Chem., 1997, 102, 1444–1450.

    Article  Google Scholar 

  55. G. Ferraudi, G. A. Argüello, H. Ali, J. E. van Lier Types I and II sensitized photooxidation of aminoacid by phthalocyanines: a flash photochemical study, Photochem. Photobiol., 1988, 47, 657–660.

    Article  CAS  PubMed  Google Scholar 

  56. M. E. Daraio, A. Völker, P. A. Aramendía, E. San Román Tryptophan quenching of zinc-phthalocyanine and porphycene fluorescence in micellar CTAC, Photochem. Photobiol., 1998, 67, 371–377.

    Article  CAS  Google Scholar 

  57. J. M. Wessels, C. S. Foote, W. E. Ford, M. A. J. Rodgers Photooxidation of tryptophan: O2(1Δg) versus electron-transfer pathway, Photochem. Photobiol., 1997, 65, 96–102.

    Article  CAS  PubMed  Google Scholar 

  58. M. Ochsner Photophysical and photobiological processes in photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  59. R. Bonnett, G. Martínez Photobleaching of sensitisers used in photodynamic therapy, Tetrahedron, 2001, 57, 9513–9547.

    Article  CAS  Google Scholar 

  60. M. Cañete, A. Villanueva and A. Juarraz, Uptake and photoeffectiveness of two thiazines in HeLa cells, Anti-Cancer Drug Des., 1993, 8, 471–477.

    Google Scholar 

  61. B. M. Aveline and R. W. Redmond, Can cellular phototoxicity be accurately predicted on the basic of sensitizer photophysics?, Photochem. Photobiol., 1999, 69, 306–316.

    Article  CAS  PubMed  Google Scholar 

  62. P. Morlière, J.-C. Mazière, R. Santus, C. D. Smith, M. R. Prinsep, C. C. Stobbe, M. C. Fenning, J. L. Golberg and J. D. Chapman, Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo, Cancer Res., 1998, 58, 3571–3578.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo N. Durantini.

Additional information

Electronic supplementary information (ESI) available: Fig. S1-S3 and Table S1, discussed in the text. See http://www.rsc.org/suppdata/pp/b2/b212890j/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elisa Milanesio, M., Gabriela Alvarez, M., Silber, J.J. et al. Photodynamic activity of monocationic and non-charged methoxyphenylporphyrin derivatives in homogeneous and biological media. Photochem Photobiol Sci 2, 926–933 (2003). https://doi.org/10.1039/b212890j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b212890j

Navigation