Skip to main content
Log in

Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This review points to the investigations concerning the effects of zero-frequency (DC) and oscillating (AC) magnetic fields (MFs) on living matter, and especially those exerted by weak DC and low-frequency/low-intensity AC MFs. Starting from the analysis of observations on the action of natural magnetic storms (MSs) or periodic geomagnetic field (GMF) variations on bacteria, plants and animals, which led to an increasing interest in MFs in general, this survey pays particular attention to the background knowledge regarding the action of artificial MFs not only at the ionic, molecular or macromolecular levels, but also at the levels of subcellular regions, in vitro cycling cells, in situ functioning tissues or organs and total bodies or entire populations. The significance of some crucial findings concerning, for instance, the MF-dependence of the nuclear or cellular volumes, rate of cell proliferation vs. that of cell death, extent of necrosis vs. that of apoptosis and cell membrane fluidity, is judged by comparing the results obtained in a solenoid (SLD), where an MF can be added to a GMF, with those obtained in a magnetically shielded room (MSR), where the MFs can be partially attenuated or null. This comparative criterion is required because the differences detected in the behaviour of the experimental samples against that of the controls are rather small per se and also because the evaluation of the data often depends upon the peculiarity of the methodologies used. Therefore, only very small differences are observed in estimating the MF-dependence of the expression of a single gene or of the rates of total DNA replication, RNA transcription and protein translation. The review considers the MF-dependence of the interactions between host eukaryotic cells and infecting bacteria, while documentation of the harmful effects of the MFs on specific life processes is reported; cases of favourable action of the MFs on a number of biological functions are also evidenced. In the framework of studies on the origin and adaptation of life on Earth or in the Universe, theoretical insights paving the way to elucidate the mechanisms of the MF interactions with biostructures and biosystems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Lawrence and W. R. Adey, Non linear wave mechanisms in interactions between excitable tissue and electromagnetic fields, Neurol. Res., 1982, 4, 115–153.

    Article  CAS  PubMed  Google Scholar 

  2. A. Lacy-Hulbert, J. C. Metcalfe and R. Hesket, Biological responses to electromagnetic fields, FASEB J., 1998, 12, 395–420.

    Article  CAS  PubMed  Google Scholar 

  3. C. A. Basset, Beneficial effects of electromagnetic fields, J. Cell. Biochem., 1993, 51, 387–393.

    Article  Google Scholar 

  4. T. Eremenko, C. Esposito, A. Pasquarelli, E. Pasquali and P. Volpe, Cell-cycle kinetics of Friend erythroleukemia cells in a magnetically shielded room and in a low-frequency/low-intensity magnetic field, Bioelectromagnetics, 1997, 18, 58–66.

    Article  CAS  PubMed  Google Scholar 

  5. M. Blank, The surface compartment model: a theory of ion transport focused on ionic processes in the electric double layers at membrane protein surface, Biochim. Biophys. Acta, 1987, 906, 277–294.

    Article  CAS  PubMed  Google Scholar 

  6. J. Walleczeck, Electromagnetic field effect on cells of the immune system: the role of calcium signaling, FASEB J., 1992, 6, 3177–3185.

    Article  Google Scholar 

  7. R. Glaser, Current concepts of the interaction of weak electromagnetic fields with cells, Bioelectrochem. Bioenerg., 1992, 27, 255–268.

    Article  Google Scholar 

  8. R. P. Liburdy, Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel, FEBS Lett., 1992, 301, 53–59.

    Article  CAS  PubMed  Google Scholar 

  9. R. Karabakhtsian, N. Broude, N. Shalts, S. Kochlatyi, R. Goodman and A. Henderson, Ca2+ is necessary in the cell response to EM fields, FEBS Lett., 1994, 349, 1–6.

    Article  CAS  PubMed  Google Scholar 

  10. F. S. Barnes, Effect of electromagnetic fields on the rate of chemical reactions, Biophysics, 1996, 41, 801–808.

    Google Scholar 

  11. S. Paradisi, G. Donelli, M. T. Santini, E. Straface and W. Marloni, A 50 Hz magnetic field induces structural and biophysical changes in membranes, Bioelectromagnetics, 1993, 14, 247–255.

    Article  CAS  PubMed  Google Scholar 

  12. P. Volpe, T. Parasassi, C. Esposito, G. Ravagnan, A. M. Giusti, A. Pasquarelli and T. Eremenko, Cell membrane lipid molecular dynamics in a solenoid vs. a magnetically shielded room, Bioelectromagnetics, 1998, 19, 107–111.

    Article  CAS  PubMed  Google Scholar 

  13. J. M. R. Delgado, J. Leal, L. Moneagudo and G. Gracia, Embryological changes induced by weak ELF EMF, J. Anat., 1982, 134, 533–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. A. H. Martin, Development of chicken embryos following exposure to 60 Hz MF with differing waveforms, Bioelectromagnetics, 1992, 13, 223–230.

    Article  CAS  PubMed  Google Scholar 

  15. S. Maffeo, M. Miller and E. Carstensen, Lack of effect of weak low-frequency EMF on chick embryogenesis, J. Anat., 1984, 139, 613–618.

    PubMed  PubMed Central  Google Scholar 

  16. B. F. Sisken, I. Fowler, C. Mayaud, J. P. Ryaby and A. Pilla, Pulsed EMF and normal chick development, J. Bioelectr., 1986, 5, 25–34.

    Article  Google Scholar 

  17. B. M. Vladimirsky, Biological rhythms and the solar activity, in Problems of Cosmic Biology, ed. V. N. Chernigovsky, Nauka, Moscow, 1980, vol. 41, pp. 289–315.

    Google Scholar 

  18. N. A. Temurjants, B. M. Vladimirsy and O. G. Tishkin, Extremely Low-Frequency Signals in Biological World, Naukova Dumka, Kiev, 1992.

    Google Scholar 

  19. H. D. Yeagle, A preliminary study of physical basis of bird navigation, J. Appl. Physiol., 1947, 18, 1035–1063.

    Article  Google Scholar 

  20. Y. A. Kholodov, Reactions of the nervous system to electromagnetic fields, Nauka, Moscow, 1975.

    Google Scholar 

  21. J. L. Kirsschvink, D. S. Jones and B. McFadden, Magnetite Biomineralization and Magnetoreception in Organisms: a New Biomagnetism, Plenum Press, New York, 1985.

    Book  Google Scholar 

  22. F. S. Barnes, Interaction of DC and ELF electric fields with biological materials and systems, in Handbook on Biological Effects of Electromagnetic Fields, ed. C. Polk and E. Postow, CRC Press, Boca Raton, FL, 1996, pp. 103–147.

    Google Scholar 

  23. G. R. Broun, O. B. Iljinsky and V. M. Muravejko, Perception of magnetic field by receptors of Lorenzini ampullas in Black Sea skates, J. Physiol. USSR, 1977, 63, 232–238.

    CAS  PubMed  Google Scholar 

  24. R. D. Govorun, V. I. Danilov, V. N. Fomichjova, N. A. Beljavskaja and S. Y. Zinchenko, Influence of geomagnetic field fluctuations and its shielding on early periods of higher plant germination, Biofizika, 1992, 37, 738–744.

    Google Scholar 

  25. N. I. Bogatina, V. M. Litvin and M. P. Travkin, Wheat roots orientation under the effect of geomagnetic field, Biofizika, 1986, 31, 886–890.

    Google Scholar 

  26. N. A. Beljavskaja, V. N. Fomichjova, R. D. Govorun and V. I. Danilov, Structural and functional organization of meristem cells of pea, flax and lentil roots under conditions of the geomagnetic shielding, Biofizika, 1992, 37, 745–749.

    Google Scholar 

  27. V. N. Fomichjova, V. A. Zaslavsky, R. D. Govorun and V. I. Danilov, Dynamics of RNA and protein synthesis in cells of root meristem of pea, flax and lentil under conditions of shielding the geomagnetic field, Biofizika, 1992, 37, 750–758.

    Google Scholar 

  28. O. A. Alfjorov and T. V. Kuznetsova, Influence of weakened geomagnetic field on the stability of Escherichia coli to ultraviolet rays, Cosm. Biol. Aviat. Cosm. Med., 1981, 4, 57–58.

    Google Scholar 

  29. V. P. Kaznacheev, V. P. Mikhajlova, M. P. Ivanova, Y. A. Zajtsef and N. I. Kharina, Growth and behaviour of the cell monolayer in the hypomagnetic field, in Biophysical and Clinical Aspects of Heliobiology, ed. M. N. Gnevishev, Nauka, Leningrad, 1989, pp. 189–195.

    Google Scholar 

  30. A. V. Sosunov, A. B. Golubshak, V. A. Semkin and A. V. Melnikov, Observation of some processes in shielded volumes. Symposium on Hygienic Estimate of Magnetic Fields, Proceedings, Moscow, 1972, pp. 144–146.

    Google Scholar 

  31. Y. G. Grigorjev, Reaction of organism to weakened geomagnetic field: effect of magnetic deprivation, Radiat. Biol. Radioecol., 1995, 35, 3–18.

    Google Scholar 

  32. V. G. Podovkin, Response of hormonal and mediator regulation systems to the weak geomagnetic fields on formation of antibodies in mice, Bull. Exptl. Biol. Med., 1995, 117, 482–483.

    Google Scholar 

  33. Y. F. Aschikaliev, V. I. Drobjev, V. M. Somsikiv, V. A. Turkeeva and T. K. Yakovets, Influence of heliogeophysical parameters on Ecology, Biofizika, 1995, 40, 1031–1037.

    Google Scholar 

  34. G. Villoresi, T. K. Breus, L. I. Dorman, N. Yuchi and S. I. Rapoport, Effect of interplanetary and geophysical disturbances on the incidences of clinically important pathologies: myocardial infarction and insult, Biofizika, 1995, 40, 983–993.

    CAS  PubMed  Google Scholar 

  35. V. N. Oraevsky, S. A. Golyshev, A. E. Levitin, T. K. Breus, S. V. Ivanova, P. I. Komorov and S. I. Rapoport, Parameters of “Electromagnetic weather” in near terrestrial space determining the effects on biosystems, Biofizika, 1995, 40, 813–821.

    Google Scholar 

  36. V. G. Sidjakin, N. P. Yanova, S. I. Bazhenova and E. V. Archangelskaja, Effect of geomagnetic disturbances on evoked activity in neurons of the motor cortex, in Problems of Cosmic Biology, ed. M. N. Gnevishev, Nauka, Leningrad, 1989, vol. 65, pp. 87–92.

    Google Scholar 

  37. S. M. Chibisov, T. K. Breus, A. E. Levitin and G. M. Drogova, Biological effects of the strong planetary geomagnetic storm, Biofizika, 1995, 40, 959–968.

    CAS  PubMed  Google Scholar 

  38. N. K. Belisheva and A. N. Popov, Morphological and functional dynamics of states of cell culture at variations of the high-latitude geomagnetic field, Biofizika, 1995, 40, 755–764.

    CAS  PubMed  Google Scholar 

  39. C. Fanelli, S. Coppola, R. Barone, C. Colussi, G. Gualardi, P. Volpe and L. Ghibelli, Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx, FASEB J., 1999, 13, 95–102.

    Article  CAS  PubMed  Google Scholar 

  40. S. Engstrom and R. Fitzsimmons, Five hypotheses to examine the nature of magnetic field transduction in biological systems, Bioelectromagnetics, 1999, 20, 423–430.

    Article  CAS  PubMed  Google Scholar 

  41. R. Emura, N. Ashida, T. Higashi and T. Takeuchi, Orientation of bull sperms in static magnetic fields, Bioelectromagnetics, 2001, 22, 60–65.

    Article  CAS  PubMed  Google Scholar 

  42. Y. G. Dorfman, Physical phenomena going on in living objects under the influence of static magnetic fields, in Influence of Magnetic Fields on Biological Objects, ed. Y. A. Kholodov, Nauka Publishers, Moscow, 1971, pp. 15–23.

    Google Scholar 

  43. M. N. Zhadin, Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects, Bioelectromagnetics, 1998, 19, 279–292.

    Article  CAS  PubMed  Google Scholar 

  44. V. N. Binhi, Y. D. Alipov and I. Y. Belyaev, Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes, Bioelectromagnetics, 2001, 22, 79–86.

    Article  CAS  PubMed  Google Scholar 

  45. A. Del Moral, M. J. Azanza, A. C. Calvo and R. N. Perez-Bruzon, Cooperative diamagnetism and Ca2+ liberation of plasma membrane molecules explains the neuron responses to applied static and extremely low frequency magnetic fields, in Biological Effects of EMFs, ed. P. Kostarakis, Demokritos Publishers, Rhodes, 2002, vol. 1, pp. 298–308.

    Google Scholar 

  46. P. Volpe, G. Cappelli, F. Mariani, A. Serafino and T. Eremenko, Macrophage sensitivity to static magnetic fields, in Biological Effects of EMFs, ed. P. Kostarakis, Demokritos Publishers, Rhodes, 2002, vol. I, pp. 374–381.

    Google Scholar 

  47. G. Cappelli, P. Volpe, A. Sanduzzi, A. Sacchi, V. Colizzi and F. Mariani, Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97, Infect. Immun., 2001, 69, 7262–7270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. R. Kavel, EMF and current cancer concepts, Bioelectromagnetics, 1996, 17, 339–357.

    Article  Google Scholar 

  49. E. N. Perker, Magnetic fields in the Cosmos, Sci. Am., 1983, 249, 36–47.

    Article  Google Scholar 

  50. P. Volpe, Introduzione alla Biofisica delle Radiazioni, UNESCO Publisher, Venice, 1999, pp. 1–256.

    Google Scholar 

  51. T. Higashi, S. Sagawa, N. Ashida and T. Takeuci, Orientation of glutaraldehyde-fixed erythrocytes in strong static magnetic fields, Bioelectromagnetics, 1996, 17, 335–338.

    Article  CAS  PubMed  Google Scholar 

  52. M. N. Repacholi and B. Greenebaum, Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs, Bioelectromagnetics, 1999, 20, 133–160.

    Article  CAS  PubMed  Google Scholar 

  53. E. Lindstrom, P. Lindstrom, A. Berglund, E. Lundgren and K. Hansson-Mild, Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities, Bioelectromagnetics, 1995, 16, 41–47.

    Article  CAS  PubMed  Google Scholar 

  54. A. Cossarizza, S. Angioni, F. Petraglia, A. Gennazzani, D. Monti, M. Capri, F. Bersani, R. Cadossi and C. Franceschi, Exposure to low frequency pulsed electromagnetic fields increases interleukin-1 and interleukin-6 production by human peripheral blood mononuclear cells, Exptl. Cell. Res., 1993, 204, 385–387.

    Article  CAS  PubMed  Google Scholar 

  55. G. Cappelli, Mycobacterium tuberculosis, HIV and human macrophage: role of their reciprocal influence in the outcome of infection, PHD Thesis (Tutors: V. Colizzi and P. Volpe), University of Rome “Tor Vergata”, Rome, 2001, pp. 1–118.

    Google Scholar 

  56. R. Tartaglione, Stabilità della trasposizione di elementi di inserzione di Mycobacterium tuberculosis in campi magnetici statici, Thesis (Tutor: P. Volpe), University of Rome “Tor Vergata”, Rome, 2001, pp. 1–112.

    Google Scholar 

  57. T. Eremenko, C. Esposito, E. Pasquali and P. Volpe, Incubator for cell cultures growing in a shielded room without electromagnetic fields or in a system producing electromagnetic fields, in Italian National Research Council Patents, CNR Press, Rome, 1993, pp. 60–61, f.n. RM 93 A000848, pp. 1–14.

    Google Scholar 

  58. P. Volpe, T. Parasassi and T. Eremenko, Adaptation of cell membrane fluidity to a low-frequency/low-intensity magnetic field, in Proceedings of the 20th Meeting of the Bioelectromagnetics Society, Trade Winds, USA, 1998, P125B.

    Google Scholar 

  59. T. Eremenko, C. Esposito, P. Iacovacci, E. Tartaglini and P. Volpe, Regulation of macromolecular biosynthesis in growing erythroleukemia cells exposed to a magnetic field, in Annual Review of Research on Biological Effects of Electric and Magnetic Fields, ed. D. Wisecup, San Diego, CA, 1992, A15, 1–2.

    Google Scholar 

  60. T. Eremenko, C. Esposito, G. Starace, T. Parasassi, G. Ravagnan and P. Volpe, Gene expression, membranal state and cell culture growth cycle in a low-frequency magnetic field, in Electric and Magnetic fields and Gene Activity, ed. P. Gailey and D. Wisecup, W/L Associates, Frederick, MD, 1993, pp. 12–13.

    Google Scholar 

  61. B. Youbicier-Simo, F. Boudard, C. Cabaner and M. Bastide, Biological effects of continuous exposure of embryos and young chickens to EMF emitted by VDU, Bioelectromagnetics, 1997, 18, 514–523.

    Article  CAS  PubMed  Google Scholar 

  62. S. Grimaldi, D. Pozzi, A. Lisi, S. Rieti, V. Manni, G. Ravagnan, L. Luciani, T. Eremenko and P. Volpe, Influence of the magnetic field on tadpole metamorphosis, Int. J. Radiat. Med., 2000, 1, 96–103.

    Google Scholar 

  63. A. R. Liboff, Geomagnetic cyclotron resonance in living cells, J. Biol. Phys., 1985, 9, 99–100.

    Article  Google Scholar 

  64. B. R. McLeod and A. R. Liboff, Cyclotron resonance in cell membranes: the theory of the mechanism, in Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems, ed. M. Blank and E. Findl, Plenum Press, New York, 1987, pp. 97–108.

    Chapter  Google Scholar 

  65. A. Chiabrera, B. Bianco, J. J. Kaufman and A. A. Pilla, Quantum dynamics of ions in molecular crevices under electromagnetic exposure, in Electromagnetics in Biology and Medicine, ed. C. T. Brighton and S. R. Pollak, San Francisco Press, San Francisco, CA, 1991, pp. 21–26.

    Google Scholar 

  66. D. T. Edmunds, Larmor procession as a mechanism for the detection of static and alternating magnetic fields, Bioelectrochem. Bioenerg, 1993, 30, 3–12.

    Article  Google Scholar 

  67. J. P. Blanchard and C. F. Blackman, Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems, Bioelectromagnetics, 1994, 15, 217–238.

    Article  CAS  PubMed  Google Scholar 

  68. A. N. Volobuev, B. N. Zhukov, A. U. Bakhito, E. L. Ovcinnikov and I. A. Trufanov, Influence of constant magnetic field and laser emission on neurophysiological processes, Biofizika, 1993, 38, 372–377.

    CAS  PubMed  Google Scholar 

  69. L. P. Agulova, A. M. Opalinskaja and V. C. Kirjanov, Specific features of reactions of different objects sensitive to change in cosmophysical factors and action of weak electromagnetic fields, in Problems of Cosmic Biology, ed. M. N. Gnevishev, Nauka, Leningrad, 1989, vol. 65, pp. 160–181.

    Google Scholar 

  70. G. Piccardi, The Chemical Basis of Medical Climatology, Charles C. Thomas, Springfield, 1962.

    Google Scholar 

  71. L. D. Kislovsky, Reaction of biological system to weak low-frequency electromagnetic fields adequate for it, in Problems of Cosmic Biology, ed. A. M. Ugolev, Nauka, Moscow, 1982, vol. 43, pp. 148–166.

    Google Scholar 

  72. V. E. Zhvirblis, On reproducibility of heliobiological experiments, in Problems of Cosmic Biology, ed. M. N. Gnevishev, Nauka, Leningrad, 1989, vol. 65, pp. 145–160.

    Google Scholar 

  73. B. M. Vladimirsky and N. A. Temurjants, Nuclear magnetic resonance of weak electromagnetic field action on biological, physical and chemical systems, Biofizika, 1996, 38, 372–377.

    Google Scholar 

  74. V. N. Binhi, Nuclear spins in primary mechanisms of biomagnetic effects, Biofizika, 1995, 40, 671–685.

    Google Scholar 

  75. V. V. Lednev, N. A. Belova, I. K. Srebnitskaja, E. N. Iljasova, Z. N. Rozhdesvenskaja, A. A. Klimov, N. A. Belova and K. P. Tiras, Magnetic parametric resonance in biosystems: experimental verification of the theoretical predictions with the use of regenerating planarians Dugestia tigrina as a test system, Biofizika, 1996, 41, 815–825.

    CAS  Google Scholar 

  76. V. N. Binhi, On the model ion channel-electrical solenoid, Biofizika, 1995, 40, 549–550.

    Google Scholar 

  77. V. N. Binhi, Mechanism of magnetosensitive ion binding by some proteins, Biofizika, 1997, 42, 338–342.

    Google Scholar 

  78. A. El-Lakkani, Dielectric response of some biological tissues, Bioelectromagnetics, 2001, 22, 272–279.

    Article  CAS  PubMed  Google Scholar 

  79. M. N. Zhadin, Action of magnetic fields on the ion motion in a macromolecule: theoretical analysis, Biofizika, 1996, 41, 832–850.

    CAS  Google Scholar 

  80. C. M. Cook, A. W. Thomas and F. S. Prato, Human electrophysiological and cognitive effects of exposure to ELF magnetic and ELF modulated RF and microwave fields: a review of recent studies, Bioelectromagnetics, 2002, 23, 144–157.

    Article  CAS  PubMed  Google Scholar 

  81. Y. P. Chukova, The general laws of biological effects of optical electromagnetic fields, in Biological Effects of EMFs, ed. P. Kostarakis, Demokritos Publishers, Rhodes, 2002, vol. I, pp. 318–326.

    Google Scholar 

  82. D. J. Panagopoulos, N. Messini, A. Karabarbounis, A. L. Filippetis and I. H. Margaritis, A mechanism for action of oscillating electric fields on cells, Biochem. Biophys. Res. Commun., 2000, 272, 634–640.

    Article  CAS  PubMed  Google Scholar 

  83. S. Grimaldi, D. Pozzi, M. Santoro, A. Lisi, E. Pasquali,, A. Serafino, L. Giuliani, M. Vignati, T. Eremenko and P. Volpe, Magnetic field is affecting biophysical and morphological properties of mammalian cells, in, 2nd Workshop on Biostructures and Biosystems, Portonovo, Abstr., 1997, C, 25.

    Google Scholar 

  84. Y. G. Shokorbatov, V. G. Shakhbazov and A. O. Rudenko, Modification of electrokinetic properties of nuclei in human buccal epithelial cells by electric fields, Bioelectromagnetics, 2001, 22, 106–111.

    Article  Google Scholar 

  85. F. Bistolfi, Electromagnetic man and magnetic resonance tomography–Update on the biological effects and new paths of research, Riv. Neuroradiol., 2001, 14, 63–82.

    Article  Google Scholar 

  86. M. Golzo, J. Teissie and M. P. Rols, Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field, Biochem. Biophys. Acta, 2002, 1563, 23–28.

    Article  Google Scholar 

  87. S. Koronkievicz, S. Kalinowsky and K. Bryl, Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes, Biochem. Biophys. Acta, 2002, 1561, 222–229.

    Article  Google Scholar 

  88. C. Maercker, J. Czyf, A. M. Wobus, W. Huber, A. Poustka, S. Ivancsits, H. W. Ruediger, O. Jhan, E. Diem, J. Schuderer, N. Kuster, D. Fornasari, F. Clementi, K. Schlatterer, R. Tauber, R. Fitzner, J. Reivenen, F. Aldokofer and D. Leszczynski, An eu-wide initiative to characterize the biological effects of EMF on human and mouse cell linea by gene expression profiling, in Biological Effects of EMFs, ed. P. Kostarakis, Demokritos Publishers, Rhodes, 2002, vol. II, pp. 588–594.

    Google Scholar 

  89. N. A. Cridland, R. G. E. Haylock and R. D. Saunders, 50 Hz magnetic field exposure alters onset of S-phase in normal human fibroblasts, Bioelectromagnetics, 1999, 20, 446–452.

    Article  CAS  PubMed  Google Scholar 

  90. A. Markkanen, J. Juutilainen, S. Lang, J. Pelkonen, T. Rytomaa and J. Naarala, Effects of 50 Hz magnetic field on cell cycle kinetics and the colony forming ability of budding yeast exposed to ultraviolet radiation, Bioelectromagnetics, 2001, 22, 345–350.

    Article  CAS  PubMed  Google Scholar 

  91. J. P. Shah, P. Midkiff, P. C. Brandt and B. F. Sisken, Growth and differentiation of PC6 cells: the effects of pulsed electromagnetic fields (PEMF), Bioelectromagnetics, 2001, 22, 267–271.

    Article  CAS  PubMed  Google Scholar 

  92. S. P. Yu, L. M. T. Canzoniero and D. W. Choi, Ion homeostasis and apoptosis, Curr. Opin. Cell Biol., 2001, 13, 405–411.

    Article  CAS  PubMed  Google Scholar 

  93. C. Gidon-Jeangirard, E. Solito, A. Hofman, F. Russo-Marie, J. M. Freyssinet and M. C. Martinez, Annexin V counteracts apoptosis while inducing Ca2+ influx in human lymphocytic T cells, Biochem. Biophys. Res. Commun., 1999, 265, 265–215.

    Article  CAS  Google Scholar 

  94. M. Obo, S. Konishi, Y. Otaka and S. Kitamura, Effect of magnetic field exposure on calcium channel currents using patch clamp technique, Bioelectromagnetics, 2002, 23, 306–314.

    Article  CAS  PubMed  Google Scholar 

  95. X. Wang, F. F. Becker and P. R. C. Gascoyne, Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation, Biochem. Biophys. Acta, 2002, 1564, 412–420.

    Article  CAS  PubMed  Google Scholar 

  96. G. R. Ding, T. Nakahara, R. R. Tian, Y. Guo and J. Miyakoshi, Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells, Biochem. Biophys. Res. Commun., 2001, 286, 953–957.

    Article  CAS  PubMed  Google Scholar 

  97. J. G. Robinson, A. R. Pendieton, K. O. Manson, B. K. Murray and K. L. O’neill, Decreased DNA repair rates and protein from heat induced apoptosis mediated by electromagnetic field exposure, Bioelectromagnetics, 2002, 23, 106–112.

    Article  CAS  Google Scholar 

  98. A. Negroni, M. C. Pirozzoli, G. A. Lovisolo, L. Mosiello, C. Laconi and C. Marino, Exposure to 50 Hz magnetic fields of a neuroblastoma cell line: effects on apoptosis, in Biological Effects of EMFs, ed. P. Kostarakis, Demokritos Publishers, Rhodes, 2002, vol. II, pp. 865–868.

    Google Scholar 

  99. L. Dovevey, C. Patinot, M. Debray, D. Thierry, H. Brugere, J. Lambrozo, J. J. Guillosson and J. Nafziger, Absence of the effects of 50 Hz magnetic fields on the progression of acute myeloid leukaemia in rats, Int. J. Radiat. Biol., 2000, 853–862.

    Google Scholar 

  100. R. Supino, M. G. Bottone, C. Pellicciari, C. Cesarini, G. Bottiroli, M. Belleri and A. Veicsteinas, Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro, Histol. Histopathol., 2001, 16, 719–726.

    CAS  PubMed  Google Scholar 

  101. H. Yomori, K. Yasunaga, C. Takahashi, A. Tanaka, S. Takashima and M. Sekijiama, Elliptically polarized magnetic fields do not alter immediate early response genes expression levels in human glioblastoma cells, Bioelectromagnetics, 2002, 23, 89–96.

    Article  CAS  PubMed  Google Scholar 

  102. R. Tonini, M. D. Baroni, E. Masala, M. Micheletti, A. Ferroni and M. Mazzanti, Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation, Biophys. J., 2001, 81, 2580–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. C. G. Burkhart and C. N. Burkhart, Are magnets effective for pain control?, JAMA–J. Am. Med. Assoc., 2000, 284, 564–565.

    Article  CAS  Google Scholar 

  104. V. V. Morariu, D. Ciorba and S. Neamtu, Life in zero magnetic field. I. In vitro human blood aging, Electr. Magnetobiol., 2000, 19, 289–302.

    CAS  Google Scholar 

  105. M. Buemi, D. Marino, G. Di Pasquale, F. Floccari, M. Senatore, C. Aloisi, F. Grasso, G. Mondio, P. Perillo, N. Frisina and F. Corica, Cell proliferation-cell death balance in renal cell cultures after exposure to a static magnetic field, Nephron, 2001, 87, 269–273.

    Article  CAS  PubMed  Google Scholar 

  106. M. F. Testori, P. A. Oberg, M. Iwasaka and S. Ueno, Melanophore aggregation in strong static magnetic fields, Bioelectromagnetics, 2002, 23, 444–449.

    Article  Google Scholar 

  107. M. J. Stansell, W. D. Winters, R. H. Doe and B. K. Dart, Increased antibiotic resistance of E. Coli exposed to static magnetic fields, Bioelectromagnetics, 2001, 22, 129–137.

    Article  CAS  PubMed  Google Scholar 

  108. Y. Satow, K. Matsunami, T. Kawashima, H. Satake and K. Huda, A strong constant magnetic field affects muscle tension development in bullfrog neuromuscular preparations, Bioelectromagnetics, 2001, 22, 365–369.

    Article  Google Scholar 

  109. A. Yano, E. Idako, K. Fujiwara and M. Iimoto, Induction of primary root curvature in radish seedlings in static magnetic field, Bioelectromagnetics, 2001, 22, 194–199.

    Article  CAS  PubMed  Google Scholar 

  110. S. G. Berk, S. Srikanth, S. M. Mahajan and C. A. Ventrice, Static uniform magnetic fields and amoebe, Bioelectromagnetics, 1997, 18, 81–84.

    Article  CAS  PubMed  Google Scholar 

  111. J. Gmitrov, C. Ohkubo and H. Okano, Effect of 0.25 T static magnetic field on microcirculation in rabbits, Bioelectromagnetics, 2002, 23, 224–229.

    Article  PubMed  Google Scholar 

  112. J. Gmitrov and C. Ohkubo, Artificial static and geomagnetic field interrelated impact on cardiovascular regulation, Bioelectromagnetics, 2002, 23, 329–338.

    Article  PubMed  Google Scholar 

  113. S. Engstrom, M. S. Markov, M. J. McLean, R. R. Holcomb and J. M. Markov, Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation, Bioelectromagnetics, 2002, 23, 475–479.

    Article  CAS  PubMed  Google Scholar 

  114. G. Mirabolghasemi and M. Azarnia, Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields, Bioelectromagnetics, 2002, 23, 416–420.

    Article  PubMed  Google Scholar 

  115. M. Stamenkovich-Radak, I. Kitanovic, Z. Prolic, I. Tomisic, B. Stoijkovic and M. Andjelkovic, Effects of permanent magnetic field on wing size parameters in Drosophila melanogaster, Bioelectromagnetics, 2001, 22, 365–369.

    Article  Google Scholar 

  116. S. Cecconi, G. Gualtieri, A. Di Bartolomeo, G. Troiani, M. G. Cifone and R. Canipari, Evaluation of the effects of extremely low frequency electromagnetic fields on mammalian follicle development, Hum. Reprod., 2000, 15, 2319–2325.

    Article  CAS  PubMed  Google Scholar 

  117. F. Golfert, A. Hoter, M. Thrummler, H. Bauer and R. H. W. Funk, Extremely low frequency electromagnetic fields and heat shock can increase microvesicle motility in astrocytes, Bioelectromagnetics, 2001, 22, 71–78.

    Article  CAS  PubMed  Google Scholar 

  118. M. Lino and Y. Okuda, Osmolality dependence of erhythrocyte sedimentation and aggregation in strong magnetic field, Bioelectromagnetics, 2001, 22, 46–52.

    Article  Google Scholar 

  119. A. Pazur, Electric relaxation processes in lipid-bilayers after exposure to weak magnetic pulses, Z. Nat. J. Biosci., 2001, 56, 831–837.

    CAS  Google Scholar 

  120. R. R. Tice, G. G. Hook, M. Donner, D. I. McRee and A. W. Guy, Genotoxicity of radiofrequency signals: I. investigation of DNA damage and micronuclei induction in cultured human blood cells, Bioelectromagnetics, 2002, 23, 113–126.

    Article  CAS  PubMed  Google Scholar 

  121. A. Maes, M. Collier and L. Vershaeve, Cytogenetic effects of 900 MHz (GSM) microwaves on human lymphocytes, Bioelectromagnetics, 2001, 22, 91–96.

    Article  CAS  PubMed  Google Scholar 

  122. G. R. Ding, H. Yaguchi, M. Yoshida and J. Miyakoshi, Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-kappa B-inhibited cells, Biochem. Biophys. Res. Commun., 2000, 276, 238–243.

    Article  CAS  PubMed  Google Scholar 

  123. G. R. Ding, K. Wake, M. Taki and J. Miyakoshi, Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to electric field, Life Sci., 2001, 68, 1041–1046.

    Article  CAS  PubMed  Google Scholar 

  124. C. Ventura, M. Maioli, G. Pintus, G. Gottardi and F. Bersani, Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells, Cardiov. Res., 2000, 45, 1054–1064.

    Article  CAS  Google Scholar 

  125. G. Nindi, E. F. Hughes, M. T. Johnson, D. N. Vesper and W. X. Balcavage, Effect of ultraviolet B radiation and 100 Hz electromagnetic fields on proliferation and DNA synthesis of Jurkat cells, Bioelectromagnetics, 2002, 23, 455–463.

    Article  CAS  Google Scholar 

  126. S. Herada, S. Yamada, O. Kuramela, Y. Gunji, M. Kawasaki, T. Miyakawa, H. Yonekura, S. Sakurai. K. Bessho, R. Hosono and H. Yamamoto, Effects of high ELF magnetic fields on enzyme-catalyzed DNA and RNA synthesis in vitro and on a cell-free mismatch repair, Bioelectromagnetics, 2001, 22, 260–268.

    Article  Google Scholar 

  127. G. Testylier, L. Tonduli, R. Malablau and J. C. Debouzy, Effects of exposure to low level radiofrequency fields on acethylcholine release in hippocampus of freely moving rats, Bioelectromagnetics, 2002, 23, 249–255.

    Article  CAS  PubMed  Google Scholar 

  128. A. C. T. De Lucia, C. W. S. F. Anselmo, I. M. Oliveira, M. B. Filho and M. T. J. De Almeida Catanho, Effects of 60 Hz electric and magnetic field on the immune system in the Wistar rats, in Biological Effects of EMFs, ed. P. Kostarakis, Demokritos Publishers, Rhodes, 2002, vol. II, pp. 837–845.

    Google Scholar 

  129. C. R. McCreary, A. W. Thomas and F. S. Prato, Factors confounding cytosolic calcium measurements in Jurkat E6.1 cells during exposure to ELF magnetic fields, Bioelectromagnetics, 2002, 23, 315–328.

    Article  CAS  PubMed  Google Scholar 

  130. R. Shahidain, R. D. Mullins and J. E. Sisken, Calcium spiking and baseline calcium levels in ROS 17/2.8 cells exposed to extremely low frequency electromagnetic fields (ELF EMF), Int. J. Radiat. Biol., 2001, 77, 241–248.

    Article  CAS  PubMed  Google Scholar 

  131. C. E. Minder and D. H. Pfluger, Minder and Pfluger respond to “Electromagnetic fields and cancer in railway workers” by Savitz, Am. J. Epidemiol., 2001, 153, 839–840.

    Article  Google Scholar 

  132. P. Galloni and C. Marino, Effects of 50 Hz magnetic field exposure on tumor experimental models, Bioelectromagnetics, 2000, 21, 608–614.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Volpe.

Additional information

Pietro Volpe. Full Professor of Biochemistry at the Department of Biology of the University of Rome ‘Tor Vergata’. For many years he was Head of the Cellular Biochemistry and Biophysics Section at the International Institute of Genetics and Biophysics of the National Research Council in Naples. He was Fellow of the School of Molecular Biology and Biophysics of the European Molecular Biology Organization at the University of Oxford and Exchange Researcher at the Department of Biochemistry of the Albert Einstein College of Medicine in New York. His studies concerned the origin and evolution of the genetic code, gene structure, repair of radiodamaged gene sequences, DNA methylation, regulation of macromolecular biosynthesis during the cell cycle, cell-virus interactions, extraretinal pigmentation and colour discrimination, paramagnetic resonance in synchronized cancer cells, and influence of magnetic fields on living matter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, P. Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2, 637–648 (2003). https://doi.org/10.1039/b212636b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b212636b

Navigation