Skip to main content
Log in

Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fruticose lichen Flavocetraria nivalis and the crustose lichen Ophioparma ventosa, both common in light-exposed arctic-alpine environments, were exposed to ultraviolet radiation (UVR) in growth chambers for 30 days. Treatment with visible light (PAR) served as control. Both species accumulate the UV-absorbing phenolic compound usnic acid in the upper cortex. The latter species also synthesises several UV-absorbing medullary compounds, among them divaricatic acid. The effects of treatment with UVR on the synthesis of these two compounds were investigated by analysing the compounds quantitatively by RP-HPLC. UV-exposed thallus tips of F. nivalis contained higher concentrations of usnic acid than those not grown under UVR. Both treatments had a positive effect on the synthesis of usnic acid in O. ventosa. An additional experiment with O. ventosa was performed by first storing samples in a low-light habitat for 1 year to obtain near-zero levels of phenolics, and thereby exposing the samples to UVR and PAR for 90 days. A rapid resynthesis of usnic acid was observed for both treatments. The amounts of divaricatic acid were highly variable in all groups, and were not correlated with usnic acid concentrations or treatments. A comparison of O. ventosa from three different habitat types showed that the highest usnic acid amounts were found in the habitat with the highest levels of solar radiation. Results indicate that the induction of usnic acid production by UVR depends on the species studied, and on how well acclimatised the lichen samples are to solar radiation before they are exposed to supplementary UVR. In lichens with an already well-developed internal screening capacity, like the population of F. nivalis, enhanced UVR need not induce further accumulation of usnic acid, but removal of UVR may induce a biodegradation of usnic acid. Results also indicate that PAR is just as important as UVR for triggering the resynthesis of usnic acid in shade-adapted lichens. Divaricatic acid seems to be of low importance for the UV-screening properties of O. ventosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. T. Shindell, D. Rind, P. Lonergan Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations, Nature, 1998, 392, 589–592.

    Article  CAS  Google Scholar 

  2. L. O. Björn, T. V. Callaghan, C. Gehrke, D. Gwynn-Jones, J. A. Lee, U. Johanson, M. Sonesson, N. D. Buck Effects of ozone depletion and increased ultraviolet-B radiation on northern vegetation, Polar Res., 1999, 18, 331–337.

    Article  Google Scholar 

  3. C. L. Ballaré, M. C. Rousseaux, P. S. Searles, J. G. Zaller, C. V. Giordano, T. M. Robson, M. M. Caldwell, O. E. Sala, A. L. Scopel Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina)–an overview of recent progress, J. Photochem. Photobiol., B, 2001, 62, 67–77.

    Article  Google Scholar 

  4. A. Huiskes, D. Lud, T. Moerdijk-Poortvliet and J. Rozema, Impact of UV-B radiation on antarctic terrestrial vegetation, in Stratospheric ozone depletion; the effects of enhanced UV-B radiation on terrestrial ecosystems, ed. J. Rozema, Backhuys Publishers, Leiden, 1999, pp. 313–337.

    Google Scholar 

  5. R. E. Longton, The role of bryophytes and lichens in polar ecosystems, in Ecology of Arctic Environments, Special publication No. 13 of the British Ecological Society, ed. S. J. Woodin and M. Marquiss, Blackwell Science, Oxford, 1997, pp. 69–96.

    Google Scholar 

  6. J. Rozema, J. van de Staaij, L. O. Björn, M. Caldwell UV-B as an environmental factor in plant life: stress and regulation, Trends Ecol. Evol., 1997, 12, 22–28.

    Article  CAS  PubMed  Google Scholar 

  7. J. Rozema, J. van de Staaij, L. O. Björn and N. de Bakker, Depletion of stratospheric ozone and solar UV-B radiation: evolution of land plants, UV-screens and functions of polyphenolics, in Stratospheric ozone depletion; the effects of enhanced UV-B radiation on terrestrial ecosystems, ed. J. Rozema, Backhuys Publishers, Leiden, 1999, pp. 3–19.

    Google Scholar 

  8. P. S. Searles, S. D. Flint, M. M. Caldwell A meta-analysis of plant field studies simulating stratospheric ozone depletion, Oecologia, 2001, 127, 1–10.

    Article  PubMed  Google Scholar 

  9. P. W. Rundel The ecological role of secondary lichen substances, Biochem. Syst. Ecol., 1978, 6, 157–170.

    Article  CAS  Google Scholar 

  10. D. J. Galloway Global environmental change: lichens and chemistry, Bibl. Lichenol., 1993, 53, 87–95.

    Google Scholar 

  11. J. Rikkinen What’s behind the pretty colours? A study on the photobiology of lichens, Bryobrothera, 1995, 4, 1–239.

    Google Scholar 

  12. W. Quilhot, E. Fernández, C. Rubio, M. Goddard and M. E. Hidalgo, Lichen secondary products and their importance in environmental studies, in Lichenology in Latin America: history, current knowledge and applications, ed. M. Marcelli and R. D. H. Seaward, Companhia de Tecnologia de Saneamento Ambiental, São Paulo, 1998, pp. 171–179.

    Google Scholar 

  13. S. Huneck The significance of lichens and their metabolites, Naturwissenschaften, 1999, 86, 559–570.

    Article  CAS  PubMed  Google Scholar 

  14. F. Bachereau, J. Asta Effects of solar ultraviolet radiation at high altitude on the physiology and the biochemistry of a terricolous lichen (Cetraria islandica (L.) Ach.), Symbiosis, 1997, 23, 197–217.

    CAS  Google Scholar 

  15. F. Bachereau, J. Asta Effects of solar ultraviolet radiation at high altitude on the phenolic compounds contents of Cetraria islandica (L.) Ach. (terricolous lichen), Ecologie, 1998, 29, 267–270.

    Google Scholar 

  16. R. S. Buffoni Hall, J. F. Bornman, L. O. Björn UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis, J. Photochem. Photobiol., B, 2002, 66, 13–20.

    Article  CAS  Google Scholar 

  17. A. Swanson, D. Fahselt Effects of ultraviolet on polyphenolics of Umbilicaria americana, Can. J. Bot., 1997, 75, 284–289.

    Article  CAS  Google Scholar 

  18. M. D. BeGora, D. Fahselt Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance, Bryologist, 2001, 104, 134–140.

    Article  CAS  Google Scholar 

  19. I. Kärnefelt, A. Thell, T. Randlane, A. Saag The genus Flavocetraria Kärnefelt & Thell (Parmeliaceae, Ascomycotina) and its affinities, Ann. Bot. Fenn., 1994, 150, 79–86.

    Google Scholar 

  20. H. Skult Notes on the chemical and morphological variation of the lichen Ophioparma ventosa in East-Fennoscandia, Ann. Bot. Fenn., 1997, 34, 291–297.

    Google Scholar 

  21. C. F. Culberson Improved conditions and new data for the identification of lichen products by a standardized thin layer chromatographic method, J. Chromatogr., 1972, 72, 113–125.

    Article  CAS  PubMed  Google Scholar 

  22. F. J. White, P. W. James A new guide to microchemical techniques for the identification of lichen substances, Br. Lichen Soc. Bull., 1985, 57 suppl., 1–41.

    Google Scholar 

  23. M. Blumthaler, W. Ambach, R. Ellinger Increase in solar UV radiation with altitude, J. Photochem. Photobiol., B, 1997, 39, 130–134.

    Article  CAS  Google Scholar 

  24. M. M. Caldwell, Solar ultraviolet radiation and the growth and development of higher plants, in Photophysiology: current topics in photobiology and photochemistry, Vol. 6, ed. A. D. Giese, Academic Press, New York, 1971, pp. 131–177.

    Chapter  Google Scholar 

  25. M. Böhm, Effects of visible and UV-B radiation on growth and pigmentation in hybrid aspen (Populus tremula L. x tremuloides M.), Cand. scient. thesis, University of Tromsø, 1997, unpublished

    Google Scholar 

  26. Y. Kinoshita, Y. Yamamoto, I. Yoshimura, T. Kurokawa, S. Huneck Distribution of optical isomers of usnic and isousnic acids analyzed by high performance liquid chromatography, J. Hattori Bot. Lab., 1997, 83, 173–178.

    Google Scholar 

  27. StatSoft, Inc., STATISTICA (data analysis software system), version 6, 2001, www.statsoft.com

    Google Scholar 

  28. R. R. Sokal and F. J. Rohlf, Biometry, 2nd edn., W. H. Freeman and Company, New York, 1981.

    Google Scholar 

  29. P. W. Rundel Clinal variation in the production of usnic acid in Cladonia subtenuis along light gradients, Bryologist, 1969, 72, 40–44.

    Article  CAS  Google Scholar 

  30. D. Fahselt Lichen products of Cladonia stellaris and C. rangiferina maintained under artificial conditions, Lichenologist, 1981, 13, 87–91.

    Article  Google Scholar 

  31. D. Fahselt Interthalline variability in levels of lichen products, Bryologist, 1984, 87, 50–56.

    Article  CAS  Google Scholar 

  32. N. Hamada Environmental factors affecting the content of usnic acid in the lichen mycobiont of Ramalina siliquosa, Bryologist, 1991, 94, 57–59.

    Article  CAS  Google Scholar 

  33. W. Quilhot, L. W. S. Peña, E. H. Flores, M. E. Hidalgo, E. Fernández, G. Leighton Temporal variation in usnic acid concentration in Usnea aurantiaco-ater (Jaq.) Bory, Ser. Cient. INACH, 1991, 41, 99–106.

    Google Scholar 

  34. W. Quilhot, E. Fernández, C. Rubio, F. Cavieres, M. E. Hidalgo, M. Goddard, D. J. Galloway Preliminary data on the accumulation of usnic acid related to ozone depletion in two Antarctic lichens, Ser. Cient. INACH, 1996, 46, 105–111.

    Google Scholar 

  35. E. Fernández, W. Quilhot, C. Rubio and E. Barre, Lichen’s adaptation to altitude, in Photosynthesis: mechanisms and effects, Vol. V, ed. G. Garab, Kluwer Academic Publishers, Dordrecht, 1998, pp. 4093–4096.

    Chapter  Google Scholar 

  36. J. W. Bjerke and T. Dahl, Distribution patterns of usnic acid-producing lichens along local radiation gradients in West Greenland, Nova Hedwigia, 2002, in press

    Google Scholar 

  37. K. Huovinen Variation of lichen acids in Cladina stellaris and Cladina rangiferina in Finland and North Norway, Acta Pharm. Fenn., 1985, 94, 113–123.

    CAS  Google Scholar 

  38. M. E. Legaz, C. Vicente, C. Ascaso, E. C. Pereira, L. X. Filho Pigment analysis of sun and shade populations of Cladonia verticillaris, Biochem. Syst. Ecol., 1986, 14, 575–582.

    Article  Google Scholar 

  39. W. Quilhot, G. Leighton, E. H. Flores, E. Fernández, L. W. S. Peña, G. Guzmán Factores exógenos y endógenos determinantes de la acumulación de ácido úsnico en líquenes, Acta Farm. Bonaerense, 1987, 6, 15–22.

    CAS  Google Scholar 

  40. E. Manrique, F. López Intrathalline variation in concentration of lichen substances in Pseudevernia furfuracea, Bryologist, 1991, 94, 207–212.

    Article  Google Scholar 

  41. M. Mirando, D. Fahselt The effect of thallus age and drying procedure on extractable lichen substances, Can. J. Bot., 1978, 56, 1499–1504.

    Article  CAS  Google Scholar 

  42. K. A. Solhaug, Y. Gauslaa Parietin, a photoprotective secondary product of the lichen Xanthoria parietina, Oecologia, 1996, 108, 412–418.

    Article  PubMed  Google Scholar 

  43. K. A. Solhaug, Y. Gauslaa Acetone rinsing–a method for testing ecological and physiological roles of secondary compounds in living lichens, Symbiosis, 2001, 30, 301–315.

    CAS  Google Scholar 

  44. M. D. BeGora, D. Fahselt Photolability of secondary compounds in some lichen species, Symbiosis, 2001, 31, 3–22.

    CAS  Google Scholar 

  45. M. M. Caldwell, A. H. Teramura, M. Tevini, J. F. Bornman, L. O. Björn, G. Kulandaivelu Effects of increased solar ultraviolet radiation on terrestrial plants, Ambio, 1995, 24, 166–173.

    Google Scholar 

  46. A. R. McLeod Outdoor supplementation systems for studies of the effects of increased UV-B radiation, Plant Ecol., 1997, 128, 78–92.

    Article  Google Scholar 

  47. U. Johanson, J. Zeuthen The ecological relevance of UV-B enhancement studies is dependent on tube type, tube age, temperature and voltage, J. Photochem. Photobiol., B, 1998, 44, 169–174.

    Article  CAS  Google Scholar 

  48. S. H. Hurlbert Pseudoreplication and the design of ecological field experiments, Ecol. Monogr., 1984, 54, 187–211.

    Article  Google Scholar 

  49. S. H. Hurlbert, M. D. White Experiments with freshwater invertebrate zooplanktivores: quality of statistical analyses, Bull. Mar. Sci., 1993, 53, 128–153.

    Google Scholar 

  50. R. A. Heffner, M. J. Butler, C. K. Reilly Pseudoreplication revisited, Ecology, 1996, 77, 2558–2562.

    Article  Google Scholar 

  51. E. Fernández, W. Quilhot, I. González, M. E. Hidalgo, X. Molina, I. Meneses Lichen metabolites as UVB filters, Cosmet. Toiletries, 1996, 111, 69–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarle W. Bjerke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerke, J.W., Lerfall, K. & Elvebakk, A. Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1, 678–685 (2002). https://doi.org/10.1039/b203399b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b203399b

Navigation