Skip to main content
Log in

Photoremovable protecting groups: reaction mechanisms and applications

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photolabile protecting groups enable biochemists to control the release of bioactive compounds in living tissue. ‘Caged compounds’ (photoactivatable bioagents) have become an important tool to study the events that follow chemical signalling in, e.g., cell biology and the neurosciences. The possibilities are by no means exhausted. Progress will depend on the development of photo-removable protecting groups that satisfy the diverse requirements of new applications—a challenging task for photochemists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. R. Pillai, Photoremovable protecting groups in organic synthesis, Synthesis, 1980, 1–26

    Google Scholar 

  2. T. W. Greene and P. G. M. Wuts, Protective groups in organic synthesis, 3rd edn., New York, 1999.

    Book  Google Scholar 

  3. J. H. Kaplan, B. Forbush III and J. F. Hoffman, Rapid photolytic release of adenosine 5’-triphosphate from a protected analogue: Utilization by the Na:K pump of human red blood cell ghosts, Biochemistry, 1978, 17, 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  4. J. E. T. Corrie and D. R. Trentham, Caged nucleotides and neurotransmitters, Biological application of photochemical switches, Vol. 2, ed. H. Morrison, Wiley, 1993, pp. 243–305.

    CAS  Google Scholar 

  5. R. S. Givens and L. W. Kueper, III, Photochemistry of phosphate esters, Chem. Rev., 1993, 93, 55–66

    Article  CAS  Google Scholar 

  6. J. A. McCray and D. R. Trentham, Properties and uses of photoreactive caged compounds, Annu. Rev Biophys. Biophys. Chem., 1989, 18, 239–270.

    Article  CAS  PubMed  Google Scholar 

  7. S. R. Adams and R. Y. Tsien, Controlling cell chemistry with caged compounds, Annu. Rev. Physiol, 1993, 55, 755–784.

    Article  CAS  PubMed  Google Scholar 

  8. D. A. Zacharias, G. S. Baird and R. Y. Tsien, Recent advances in technology for measuring and manipulating cell signals, Curr Opin. Neurobiol, 2000, 10, 416–421.

    Article  CAS  PubMed  Google Scholar 

  9. G. Marriott (ed.), Caged compounds, Methods Enzymol, 1998, 291.

  10. M. Schwörer and J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds in solution I. 2-nitrotoluene: Thermodynamic and kinetic parameters of the aci-nitro tautomer, Helv. Chim. Acta, 2001, 84, 1441–1458.

    Article  Google Scholar 

  11. I. R. Dunkin, J. Gebicki, M. Kiszka and D. Sanin-Leira, Phototautomerism of o-nitrobenzyl compounds: o-quinonoid aci-nitro species studied by matrix isolation and DFT calculations, J. Chem. Soc, Perkin Trans. 2, 2001, 1414–1425.

    Article  CAS  Google Scholar 

  12. R. W. Yip, D. K. Sharma, R. Giasson and D. Gravel, Picosecond excited-state absorption of alkyl nitrobenzenes in solution, J. Phys Chem., 1984, 88, 5770–5772

    Article  CAS  Google Scholar 

  13. R. W. Yip, D. K. Sharma, R. Giasson and D. Gravel, Photochemistry of the o-nitrobenzyl system in solution: Evidence for singlet state intramolecular hydrogen abstraction, J. Phys. Chem., 1985, 89, 5328–5330

    Article  CAS  Google Scholar 

  14. D. Gravel, R. Giasson, D. Blanchet, R. W. Yip and D. K. Sharma, Photochemistry of the o-nitrobenzyl system in solution: Effects of O H distance and geometrical constraint on the hydrogen transfer mechanism in the excited state, Can. J. Chem., 1991, 69, 1193–1200.

    Article  CAS  Google Scholar 

  15. Q. Q. Zhu, W. Schnabel and H. Schupp, Formation and decay of nitronic acid in the photorearrangement of o-nitrobenzyl esters, J. Photochem., 1987, 39, 317–332

    Article  CAS  Google Scholar 

  16. H. Schupp, W. K. Wong and W. Schnabel, Mechanistic studies of the photorearrangement of o-nitrobenzyl esters, J. Photochem., 1987, 36, 85–97.

    Article  CAS  Google Scholar 

  17. J. W. Walker, G. P. Reid, J. A. McCray and D. R. Trentham, Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogues. Synthesis and mechanism of photolysis, J. Am. Chem. Soc, 1988, 110, 7170–7177.

    Article  CAS  Google Scholar 

  18. A. Barth, K. Hauser, W. Mäntele, J. E. T. Corrie and D. R. Trentham, Photochemical release of ATP from “caged ATP” studied by time-resolved infrared spectroscopy, J. Am. Chem. Soc, 1995, 117, 10311–10316

    Article  CAS  Google Scholar 

  19. A. Barth, J. E. T. Corrie, M. J. Gradwell, Y. Maeda, W. Mäntele, T. Meier and D. R. Trentham, Time-resolved infrared spectroscopy of intermediates and products from photolysis of 1-(2-nitrophenyl)ethyl phosphates: Reaction of the 2-nitrosoacetophenone byproduct with thiols, J. Am. Chem. Soc, 1997, 119, 4149–4159

    Article  CAS  Google Scholar 

  20. V. Cepus, C. Ulbrich, C. Allin, A. Troullier and K. Gerwert, Fourier transform infrared photolysis studies of caged compounds, Methods Enzymol, 1998, 291, 223–245

    Article  CAS  PubMed  Google Scholar 

  21. R. Rammelsberg, S. Boulas, H. Chorongiewski and K. Gerwert, Set-up for time-resolved step-scan FTIR spectroscopy of noncyclic reactions, Vib. Spectrosc, 1999, 19, 143–149.

    Article  CAS  Google Scholar 

  22. C. Zscherp and A. Barth, Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms, Biochemistry, 2001, 40, 1875–1883

    Article  CAS  PubMed  Google Scholar 

  23. C. Rödig, I. Chizhov, O. Weidlich and F. Siebert, Time-resolved step-scan FT-IR reveals differences between early and late M intermediates of bacteriorhodopsin, Biophys. J., 1999, 76, 2687–2701.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. V. Il’ichev and J. Wirz, Rearrangements of 2-nitrobenzyl compounds. 1. Potential energy surface of 2-nitrotoluene and its isomers explored with ab initio and density functional theory methods, J. Phys. Chem. A, 2000, 104, 7856–7870.

    Article  CAS  Google Scholar 

  25. K. Schaper, D. Dommaschke, S. Globisch and S. A. Madani-Mobarekeh, AM1 calculations on the mechanism of the o-nitrobenzyl photochemistry, J. Inf. Rec, 2000, 25, 339–354.

    CAS  Google Scholar 

  26. M. Schwörer and J. Wirz, unpublished work.

  27. S. Walbert, W. Pfleiderer and U. E. Steiner, Photolabile protecting groups for nucleosides: Mechanistic studies of the 2-(2-nitro-phenyl)ethyl group, Helv. Chim. Acta, 2001, 84, 1601–1611.

    Article  CAS  Google Scholar 

  28. Y. V. Il’ichev, M. Schwörer, M. Mac, S. V. Kombarova, B. Hellrung and J. Wirz, unpublished work.

  29. S. R. Adams, J. P. Y. Kao, G. Grynkiewicz, A. Minta and R. Y. Tsien, Biologically useful chelators that release Ca2+ upon illumination, J. Am. Chem. Soc, 1988, 110, 3212–3220.

    Article  CAS  Google Scholar 

  30. A. Hasan, K.-P Stengele, H. Giegrich, P. Cornwell, K. R. Isham, R. A. Sachleben, W. Pfleiderer and R. S. Foote, Photolabile protecting groups for nucleosides: Synthesis and photodeprotection rates, Tetrahedron, 1997, 53, 4247–4246

    Article  CAS  Google Scholar 

  31. H. Giegrich, S. Eisele-Bühler, C. Hermann, E. Kvasyuk, R. Charubala and W. Pfleiderer, New photolabile protecting groups in nucleoside and nucleotide chemistry - synthesis, cleavage mechanisms and applications, Nucleosides Nucleotides, 1998, 17, 1987–1996.

    Article  CAS  Google Scholar 

  32. N. C. Yang and C. Rivas, A new photochemical primary process, the photochemical enolization of o-substituted benzophenones, J. Am. Chem. Soc, 1961, 83, 2213.

    Article  CAS  Google Scholar 

  33. W. R. Bergmark, Photolysis of a-chloro-o-methylacetophenones, J. Chem. Soc, Chem. Commun., 1978, 61–62.

    Google Scholar 

  34. A. P. Pelliccioli, P. Klán, M. Zabadal and J. Wirz, Photorelease of HCl from o-methylphenacyl chloride proceeds through the Z-xylylenol, J. Am. Chem. Soc, 2001, 123, 7931–7932.

    Article  CAS  PubMed  Google Scholar 

  35. P. Klán, M. Zabadal and D. Heger, 2,5-Dimethylphenacyl as a new photoreleasable protecting group for carboxylic acids, Org. Lett., 2000, 2, 1569–1571.

    Article  PubMed  CAS  Google Scholar 

  36. M. Zabadal, A. P. Pelliccioli, P. Klán and J. Wirz, 2,5-Dimethylphenacyl esters: A photoremovable protecting group for carboxylic acids, J. Phys. Chem. A, 2001, 105, 10329–10333.

    Article  CAS  Google Scholar 

  37. S.-S. Tseng and E. F. Ullman, Elimination reactions induced by photoenolization of o-alkylbenzophenones, J. Am. Chem. Soc, 1976, 98, 541–544.

    Article  CAS  Google Scholar 

  38. A. P. Pelliccioli and J. Wirz, unpublished work.

  39. J. E. T. Corrie and D. R. Trentham, Synthetic, mechanistic and photochemical studies of phosphate esters of substituted benzoins, J. Chem. Soc, Perkin Trans. 1, 1992, 2409–2417.

    Article  Google Scholar 

  40. R. S. Rock and S. I. Chan, Synthesis and photolysis properties of a photolabile linker based on 3’-methoxybenzoin, J. Org. Chem., 1996, 61, 1526–1529.

    Article  CAS  Google Scholar 

  41. J. F. Cameron, C. G. Willson and J. M. J. Fréchet, Photogeneration of amines from a-keto carbamates: Photochemical studies, J. Am. Chem. Soc, 1996, 118, 12925–12937.

    Article  CAS  Google Scholar 

  42. J. M. Peach, A. J. Pratt and J. S. Snaith, Photolabile benzoin and furoin esters of a biologically active peptide, Tetrahedron, 1995, 51, 10013–10024.

    Article  CAS  Google Scholar 

  43. M. C. Pirrung and S. W. Shuey, Photoremovable protecting groups for phosphorylation of chiral alcohols. Asymmetric synthesis of phosphotriesters of (—)-3’,5’-dimethoxybenzoin, J. Org. Chem., 1994, 59, 3890–3897.

    Article  CAS  Google Scholar 

  44. J. C. Sheehan, R. M. Wilson and A. W. Oxford, The photolysis of methoxy-substituted benzoin esters. A photosensitive protecting group for carboxylic acids, J. Am. Chem. Soc, 1971, 93, 7222–7228.

    Article  CAS  Google Scholar 

  45. J. C. Sheehan and R. M. Wilson, Photolysis of desyl compounds. A new photolytic cyclization, J. Am. Chem. Soc, 1964, 86, 5277–5281.

    Article  CAS  Google Scholar 

  46. K. C. Hansen, R. S. Rock, R. W. Larsen and S. I. Chan, A method for photoinitiating protein folding in a nondenaturing environment, J. Am. Chem. Soc, 2000, 122, 11567–11568.

    Article  CAS  Google Scholar 

  47. J. E. Baldwin, A. W. McConnaughie, M. G. Moloney, A. J. Pratt and S. B. Shim, New photolabile phosphate protecting groups, Tetrahedron, 1990, 46, 6879–6884.

    Article  CAS  Google Scholar 

  48. R. S. Givens, P. S. Athey, L. W. Kueper, III, B. Matuszewski and J.-Y Xue, Photochemistry of a-keto phosphate esters: Photorelease of a caged cAMP, J. Am. Chem. Soc., 1992, 114, 8708–8710

    Article  CAS  Google Scholar 

  49. R. S. Givens, P. S. Athey, B. Matuszewski, L. W. Kueper, III, J.-Y. Xue and T. Fister, Photochemistry of phosphate esters: a-keto phosphates as a photoprotecting group for caged phosphate, J. Am. Chem. Soc, 1993, 115, 6001–6012.

    Article  CAS  Google Scholar 

  50. R. S. Givens and B. Matuszewski, Photochemistry of phosphate esters: An efficient method for the generation of electrophiles, J. Am. Chem. Soc, 1984, 106, 6860–6861.

    Article  CAS  Google Scholar 

  51. K. R. Gee, L. W. Kueper, III, J. Barnes, G. Dudley and R. S. Givens, Desyl esters of amino acid neurotransmitters. Phototriggers for biologically active neurotransmitters, J. Org. Chem., 1996, 61, 1228–1233.

    Article  CAS  Google Scholar 

  52. C. S. Rajesh, R. S. Givens and J. Wirz, Kinetics and mechanism of phosphate photorelease from benzoin diethyl phosphate: Evidence for adiabatic fission to an a-keto cation in the triplet state, J. Am. Chem. Soc, 2000, 122, 611–618.

    Article  CAS  Google Scholar 

  53. M. C. Pirrung, L. Fallon, D. C. Lever and S. W. Shuey, Inverse phosphotriester DNA synthesis using photochemically-removable dimethoxybenzoin phosphate protecting groups, J. Org. Chem., 1996, 61, 2129–2136.

    Article  CAS  Google Scholar 

  54. Y. Shi, J. E. T. Corrie and P. Wan, Mechanism of 3’,5’-dimethoxybenzoin ester photochemistry: Heterolytic cleavage intramolecularly assisted by the dimethoxybenzene ring is the primary photochemical step, J. Org. Chem., 1997, 62, 8278–8279.

    Article  CAS  PubMed  Google Scholar 

  55. M. C. Pirrung and J.-C. Bradley, Dimethoxybenzoin carbonates: Photochemically-removable alcohol protecting groups suitable for phosphoramidite-based DNA synthesis, J. Org. Chem., 1995, 60, 1116–1117.

    Article  CAS  Google Scholar 

  56. M. C. Pirrung and C.-Y Huang, Photochemical deprotection of 3’,5’-dimethoxybenzoin (DMB) carbamates derived from secondary amines, Tetrahedron Lett., 1995, 36, 5883–5884.

    Article  CAS  Google Scholar 

  57. R. S. Rock and S. I. Chan, Preparation of a water-soluble “cage” based on 3’,5’-dimethoxybenzoin, J. Am. Chem. Soc, 1998, 120, 10766–10767.

    Article  CAS  Google Scholar 

  58. H. Thirlwell, J. E. T. Corrie, G. P. Reid, D. R. Trentham and M. A. Ferenczi, Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from the rabbit using a novel caged ATP and apyrase, Biophys. J., 1994, 67, 2436–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. H.-J. Apell, M. Roudna, J. E. T. Corrie and D. R. Trentham, Kinetics of the phosphorylation of Na,K-ATPase by inorganic phosphate detected by a fluorescence method, Biochemistry, 1996, 35, 10922–10930.

    Article  CAS  PubMed  Google Scholar 

  60. G. Papageorgiou and J. E. T. Corrie, Synthesis and properties of carbamoyl derivatives of photolabile benzoins, Tetrahedron, 1997, 53, 3917–3932.

    Article  CAS  Google Scholar 

  61. R. S. Givens and C.-H. Park, p-Hydroxyphenacyl ATP: a new phototrigger, Tetrahedron Lett., 1996, 37, 6259–6262.

    Article  CAS  Google Scholar 

  62. C.-H. Park and R. S. Givens, New photoactivated protecting groups. 6. p-Hydroxyphenacyl: A phototrigger for chemical and biochemical probes, J. Am. Chem. Soc, 1997, 119, 2453–2463.

    Article  CAS  Google Scholar 

  63. R. S. Givens, A. Jung, C.-H. Park, J. Weber and W. Bartlett, New photoactivated protecting groups. 7. p-Hydroxyphenacyl: A phototrigger for excitatory amino acids and peptides, J. Am. Chem. Soc, 1997, 119, 8369–8370.

    Article  CAS  Google Scholar 

  64. R. S. Givens, J. F. W Weber, P. G. Conrad, II, G. Orosz, S. L. Donahue and S. A. Thayer, New phototriggers 9: p-Hydroxyphenacyl as a C-terminal photoremovable protecting group for oligopeptides, J. Am. Chem. Soc., 2000, 122, 2687–2697.

    Article  CAS  Google Scholar 

  65. K. Zhang, J. E. T. Corrie, V. R. N. Munasinghe and P. Wan, Mechanism of photosolvolytic rearrangement of p-hydroxy-phenacyl esters: Evidence for excited state intramolecular proton transfer as the primary photochemical step, J. Am. Chem. Soc, 1999, 121, 5625–5632.

    Article  CAS  Google Scholar 

  66. P. G. Conrad, II, R. S. Givens, B. Hellrung, C. S. Rajesh, M. Ramseier and J. Wirz, p-Hydroxyphenacyl phototriggers: The reactive excited state of phosphate photorelease, J. Am. Chem. Soc., 2000, 122, 9346–9347.

    Article  CAS  Google Scholar 

  67. R. S. Givens and J. Wirz, unpublished results.

  68. P. G. Conrad, R. S. Givens, J. F. W. Weber and K. Kandler, New phototriggers: Extending the p-hydroxyphenacyl nn* absorption range, Org. Lett., 2000, 2, 1545–1547.

    Article  CAS  PubMed  Google Scholar 

  69. X. Du, H. Frei and S.-H. Kim, Comparison of nitrophenylethyl and hydroxyphenacyl caging groups, Biopolymers, 2001, 62, 147–149.

    Article  CAS  PubMed  Google Scholar 

  70. T. Furuta and M. Iwamura, New caged groups: 7-Substituted coumarinylmethyl phosphate esters, Methods Enzymol., 1998, 291, 50–63.

    Article  CAS  PubMed  Google Scholar 

  71. J. Bendig, S. Helm, B. Schade and V. Hagen, (Coumarin-4-yl)methyl esters of cGMP and cAMP derivatives: Activation by photochemical ester cleavage, J. Inf. Rec, 1998, 24, 165–170.

    CAS  Google Scholar 

  72. T. Furuta, H. Torigai, M. Sugimoto and M. Iwamura, Photochemical properties of new photolabile cAMP derivatives in a physiological saline solution, J. Org. Chem., 1995, 60, 3953–3956.

    Article  CAS  Google Scholar 

  73. T. Furuta, A. Momotake, M. Sugimoto, M. Hatayama, H. Torigai and M. Iwamura, Acyloxycoumarinylmethyl-caged cAMP, the photolabile and membrane-permeable derivative of cAMP that effectively stimulates pigment-dispersion response of melanophores, Biochem. Biophys. Res. Commun., 1996, 228, 193–198.

    Article  CAS  PubMed  Google Scholar 

  74. T. Furuta, S. S.-H. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W. Denk and R. Y. Tsien, Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis, Proc Natl. Acad. Sci. U. S. A., 1999, 96, 1193–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. V. Hagen, J. Bendig, S. Frings, B. Wiesner, B. Schade, S. Helm, D. Lorenz and U. B. Kaupp, Synthesis, photochemistry and application of (7-methoxycoumarin-4-yl) methyl-caged 8-bromo-adenosine cyclic 3’,5’-monophosphate and 8-bromoguanosine cyclic 3’,5’-monophosphate photolyzed in the nanosecond time region, J. Photochem. Photobiol, B, 1999, 53, 91–102.

    Article  CAS  Google Scholar 

  76. V. Hagen, J. Bendig, S. Frings, T. Eckardt, S. Helm, D. Reuter and U. B. Kaupp, Highly efficient and ultrafast phototriggers for cAMP and cGMP by using long-wavelength UV/vis-activation, Angew. Chem., Int. Ed, 2001, 40, 1046–1048.

    Article  CAS  Google Scholar 

  77. B. Schade, V. Hagen, R. Schmidt, R. Herbrich, E. Krause, T. Eckardt and J. Bendig, Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. Photocleavage of (7-methoxycoumarin-4-yl)methyl-caged acids with fluorescence enhancement, J. Org. Chem., 1999, 64, 9109–9117.

    Article  CAS  Google Scholar 

  78. R. O. Schönleber, J. Bendig, V. Hagen and B. Giese, Rapid photolytic release of cytidine 5’-diphosphate from a coumarin derivative: a new tool for the investigation of ribonucleotide reductases, Bioorg Med. Chem., 2002, 10, 97–101.

    Article  PubMed  Google Scholar 

  79. P. Wan, D. W. Brousmiche, C. Z. Chen, J. Cole, M. Lukeman and M. S. Xu, Quinone methide intermediates in organic photochemistry, Pure Appl. Chem., 2001, 73, 529–534.

    Article  CAS  Google Scholar 

  80. Y. Chiang, A. J. Kresge and Y. Zhu, Flash photolytic generation of o-quinone methide in aqueous solution and study of its chemistry in that medium, J. Am. Chem. Soc, 2001, 123, 8089–8094.

    Article  CAS  PubMed  Google Scholar 

  81. G. Persy and J. Wirz, unpublished results.

  82. G. Papageorgiou, D. C. Ogden, A. Barth and J. E. T. Corrie, Photorelease of carboxylic acids from 1-acyl-7-nitroindolines in aqueous solution: Rapid and efficient photorelease of l-glutamate, J. Am. Chem. Soc, 1999, 121, 6503–6504.

    Article  CAS  Google Scholar 

  83. M. Canepari, L. Nelson, G. Papageorgiou, J. E. T. Corrie and D. Ogden, Photochemical and pharmacological evaluation of 7-nitro-indolinyl- and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters, J. Neurosci. Methods, 2001, 112, 29–42.

    Article  CAS  PubMed  Google Scholar 

  84. S. Loudwig and M. Goeldner, N-Methyl-N-(o-nitrophenyl)-carbamates as photolabile alcohol protecting groups, Tetrahedron Lett., 2001, 42, 7957–7959.

    Article  CAS  Google Scholar 

  85. A. Banerjee and D. E. Falvey, Protecting groups that can be removed through photochemical electron transfer: Mechanistic and product studies on photosensitized release of carboxylates from phenacyl esters, J. Org. Chem., 1997, 62, 6245–6251.

    Article  CAS  Google Scholar 

  86. A. Banerjee, K. Lee and D. E. Falvey, Photoreleasable protecting groups based on electron transfer chemistry. Donor sensitized release of phenacyl groups from alcohols, phosphates and diacids, Tetrahedron, 1999, 55, 12699–12710.

    Article  CAS  Google Scholar 

  87. K. Lee and D. E. Falvey, Photochemically removable protecting groups based on covalently linked electron donor-acceptor systems, J. Am. Chem. Soc, 2000, 122, 9361–9366.

    Article  CAS  Google Scholar 

  88. M. Gutman and E. Nachliel, Time-resolved dynamics of proton transfer in proteinous systems, Annu. Rev. Phys. Chem., 1997, 48, 329–356.

    Article  CAS  PubMed  Google Scholar 

  89. W. Zhou, S. M. Kuebler, D. Carrig, J. W. Perry and S. R. Marder, Efficient photoacids based upon triethylamine dialkylsulfonium salts, J. Am. Chem. Soc, 2002, 124, 1897–1901.

    Article  CAS  PubMed  Google Scholar 

  90. S. Abbruzzetti, M. Carcelli, P. Pelagatti, D. Rogolino and C. Viappiani, Photoinduced alkaline pH-jump on the nanosecond time scale, Chem. Phys. Lett., 2001, 344, 387–394

    Article  CAS  Google Scholar 

  91. H. Wang, C. Burda, G. Persy and J. Wirz, Photochemistry of 1H-benzotriazole in aqueous solution: A photolatent base, J. Am. Chem. Soc, 2000, 122, 5849–5855.

    Article  CAS  Google Scholar 

  92. F. M. Houlihan, O. Nalamasu, J. M. Kometani and E. J. Reichmanis, A retrospective on 2-nitrobenzyl sulfonate photoacid generators, J. Imaging Sci. Technol, 1997, 41, 35–40.

    CAS  Google Scholar 

  93. K. R. Gee, B. K. Carpenter and G. P. Hess, Synthesis, photochemistry, and biological characterization of photolabile protecting groups for carboxylic acids and neurotransmitters, Methods Enzymol., 1998, 291, 30–50.

    Article  CAS  PubMed  Google Scholar 

  94. C. Grewer, J. Jäger, B. K. Carpenter and G. P. Hess, A new photolabile precursor of glycine with improved properties: A tool for chemical kinetic investigations of the glycine receptor, Biochemistry, 2000, 39, 2063–2070.

    Article  CAS  PubMed  Google Scholar 

  95. H.-G. A. Breitinger, R. Wieboldt, D. Ramesh, B. K. Carpenter and G. P. Hess, Synthesis and characterization of photolabile derivatives of serotonin for chemical kinetic investigations of the serotonin 5-HT3 receptor, Biochemistry, 2000, 39, 5500–5508.

    Article  CAS  PubMed  Google Scholar 

  96. K. R. Gee, L. Niu, K. Schaper, V. Jayaraman and G. P. Hess, Synthesis and photochemistry of a photolabile precursor of N-methyl d-aspartame (NMDA) that is photolyzed in the microsecond time region and is suitable for chemical kinetic investigations of the NMDA receptor, Biochemistry, 1999, 38, 3140–3147.

    Article  CAS  PubMed  Google Scholar 

  97. K. Kandler, L. C. Katz and J. A. Kauer, Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors, Nat. Neurosci, 1998, 1, 119–123.

    Article  CAS  PubMed  Google Scholar 

  98. J. H. Kaplan and G. C. R. Ellis-Davies, Photolabile chelators for the rapid photorelease of divalent cations, Proc Natl. Acad Sci. U. S. A., 1988, 85, 6571–6575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. G C. R. Ellis-Davies and J. H. Kaplan, Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis, Proc. Natl. Acad Sci. U. S. A., 1994, 91, 187–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. F. DelPrincipe, M. Egger, G C. R. Ellis-Davies and E. Niggli, Two-photon and UV-laser flash photolysis of the Ca2+ cage, dimethoxynitrophenyl-EGTA-4, Cell Calcium, 1999, 25, 85–91.

    Article  CAS  PubMed  Google Scholar 

  101. S. R. Adams, V. Lev-Ram and R. Y. Tsien, A new caged Ca2+, azid-1, is far more photosensitive than nitrobenzyl-based chelators, Chem. Biol, 1997, 4, 867–878.

    Article  CAS  PubMed  Google Scholar 

  102. G. C. R. Ellis-Davies, J. H. Kaplan and R. J. Barsotti, Laser photolysis of caged calcium: Rates of calcium release by nitrophenyl-EGTA and DM-nitrophen, Biophys J., 1996, 70, 1006–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. J. H. Bollmann, B. Sakmann and J. G. G. Borst, Calcium sensitivity of glutamate release in a calyx-type terminal, Science, 2000, 289, 953–957

    Article  CAS  PubMed  Google Scholar 

  104. K. R. Delaney, Uncaging calcium in neurons, Imaging neurons, eds. R. Yuste, F. Lanni and A. Konnerth, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000, pp. 26.01–26.10

    Google Scholar 

  105. S. N. Yang, Y. G. Tang and R. S. Zucker, Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation, J. Neurophysiol, 1999, 81, 781–787.

    Article  CAS  PubMed  Google Scholar 

  106. N. Callamaras and I. Parker, Caged inositol 1,4,5-triphosphate for studying release of Ca2+ from intracellular stores, Methods Enzymol, 1998, 291, 380–403.

    Article  CAS  PubMed  Google Scholar 

  107. W.-H. Li, J. Llopis, M. Whitney, G. Zlokarnik and R. Y. Tsien, Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression, Nature, 1998, 392, 936–940.

    Article  CAS  PubMed  Google Scholar 

  108. H. C. Lee, R. Aarhus, K. R. Gee and T. Kestner, Caged nicotinic acid adenine dinucleotide phosphate. Synthesis and use, J. Biol. Chem., 1997, 272, 4172–4178.

    Article  CAS  PubMed  Google Scholar 

  109. R. Aarhus, K. Gee and H. C. Lee, Caged cyclic ADP-ribose, J. Biol. Chem., 1995, 270, 7745–7749.

    Article  CAS  PubMed  Google Scholar 

  110. F. Murad, Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel lecture), Angew. Chem., Int. Ed, 1999, 38, 1856–1868.

    Article  CAS  Google Scholar 

  111. L. R. Makings and R. Y. Tsien, Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased, J. Biol. Chem., 1994, 269, 6282–6285.

    Article  CAS  PubMed  Google Scholar 

  112. C. M. Maragos, D. Morley, D. A. Wink, T. M. Dunams, J. E. Saavedra, A. Hoffman, A. A. Bove, L. Isaac, J. A. Hrabie and L. K. J. Keefer, Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects, J. Med. Chem., 1991, 34, 3242–3247.

    Article  CAS  PubMed  Google Scholar 

  113. A. Srinivasan, N. Kebede, J. E. Saavedra, A. V. Nikolaitchik, D. A. Brady, E. Yourd, K. M. Davies, L. K. Keefer and J. P. Toscano, Chemistry of the diazeniumdiolates. 3. Photoreactivity, J. Am. Chem. Soc, 2001, 123, 5465–5472.

    Article  CAS  PubMed  Google Scholar 

  114. N. Bettache, T. Carter, J. E. T. Corrie, D. Ogden and D. R. Trentham, Photolabile donors of nitric oxide: Ruthenium nitrosyl chlorides as caged nitric oxides, Methods Enzymol, 1996, 268, 266–281.

    Article  CAS  PubMed  Google Scholar 

  115. S. Namiki, T. Arai and K. Fujimori, High-performance caged nitric oxide: a new molecular design, synthesis and photochemical reaction, J. Am. Chem. Soc, 1997, 119, 3840–3841

    Article  CAS  Google Scholar 

  116. S. Namiki, F. Kaneda, M. Ikegami, T. Arai, K. Fujimori, S. Asada, H. Hama, Y. Kasuya and K. Goto, Bis-N-nitroso-caged nitric oxide: Photochemistry and biological performance test by rat aorta vasorelaxation, Bioorg. Med. Chem., 1999, 7, 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  117. J. W. Walker, S. H. Gilbert, R. M. Drummond, M. Yamada, R. Sreekumar, R. E. Carraway, M. Ikebe and F. S. Fay, Signaling pathways underlying eosinophil cell motility revealed by using caged peptides, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 1568–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Y. Tatsu, Y. Shigeri, S. Sogabe, N. Yumoto and S. s Yoshikawa, Solid phase synthesis of caged peptides using tyrosine modified with a photocleavable protecting group: Application to the synthesis of caged neuropeptide Y, Biochem. Biophys. Res. Commun., 1996, 227, 688–693.

    Article  CAS  PubMed  Google Scholar 

  119. P. Pan and H. Bayley, Caged cysteine and thiophosphoryl peptides, FEBS Lett., 1997, 405, 81–85.

    Article  CAS  PubMed  Google Scholar 

  120. G. Arabaci, X.-C. Guo, K. D. Beebe, K. M. Coggeshall and D. Pei, a-Haloacetophenone derivatives as photoreversible covalent inhibitors of protein tyrosine phosphatases, J. Am. Chem. Soc, 1999, 121, 5085–5086.

    Article  CAS  Google Scholar 

  121. K. Zou, W. T. Miller, R. S. Givens and H. Bayley, Caged thiophosphotyrosine peptides, Angew. Chem., Int. Ed, 2001, 40, 3049–3051.

    Article  CAS  Google Scholar 

  122. K. Curley and D. S. Lawrence, Light-activated proteins, Curr Opin. Chem. Biol, 1999, 3, 84–88

    Article  CAS  PubMed  Google Scholar 

  123. G. Marriott and J. W. Walker, Caged peptides and proteins: New probes to study polypeptide function in complex biological systems, Trends Plant Sci, 1999, 4, 330–334.

    Article  CAS  PubMed  Google Scholar 

  124. I. Willner and S. Rubin, Control of the structure and functions of biomaterials by light, Angew. Chem., Int. Ed, 1996, 35, 367–385.

    Article  CAS  Google Scholar 

  125. G. Marriott, Caged protein conjugates and light-directed generation of protein activity: Preparation, photoactivation, and spectroscopic characterization of caged G-actin conjugates, Biochemistry, 1994, 33, 9092–9097.

    Article  CAS  PubMed  Google Scholar 

  126. C.-Y. Chang, T. Fernandez, R. Panchal and H. Bayley, Caged catalytic subunit of cAMP-dependent protein kinase, J. Am. Chem. Soc, 1998, 120, 7661–7662.

    Article  CAS  Google Scholar 

  127. G. Marriott and M. Heidecker, Light-directed generation of the actin-activated ATPase activity of caged heavy meromyosin, Biochemistry, 1996, 35, 3170–3174.

    Article  CAS  PubMed  Google Scholar 

  128. T. J. Mitchison, K. E. Sawin, J. A. Theriot, K. Gee and A. Mallavarapu, Caged fluorescent probes, Methods Enzymol., 1998, 291, 63–78.

    Article  CAS  PubMed  Google Scholar 

  129. K. E. Sawin, J. A. Theriot and T. J. Mitchison, Photoactivation of fluorescence as a probe for cytoskeletal dynamics in mitosis and cell motility, Fluorescent and luminescent probes for biological activity, W. T. Mason, Academic Press, San Diego, USA, 1999, pp. 613–627.

    Chapter  Google Scholar 

  130. R. Jasuja, J. Keyoung, G. P. Reid, D. R. Trentham and S. Khan, Chemotactic responses of Escherichia Coli to small jumps of photoreleased l-aspartate, Biophys. J., 1999, 76, 1706–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston and D. Ogden, The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photo-damage of synaptic terminals, Eur. Biophys. J., 2002, 30, 588–604.

    Article  CAS  PubMed  Google Scholar 

  132. J. A. Theriot, T. J. Mitchison, L. G. Tilney and D. A. Portnoy, The rate of actin based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization, Nature, 1992, 357, 257–260.

    Article  CAS  PubMed  Google Scholar 

  133. J.-P. Vincent and P. H. O’Farrell, The state of engrailed expression is not clonally transmitted during early Drosophila development, Cell, 1992, 68, 923–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. C. H. Girdham and P. H. O’Farrell, The use of photoactivatable reagents for the study of cell lineage in Drosophila embryogenesis, Methods Cell Biol, 1994, 44, 533–543.

    Article  CAS  PubMed  Google Scholar 

  135. W. Denk, J. H. Strickler and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, 1990, 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  136. E. B. Brown and W. W. Webb, Two-photon activation of caged calcium with submicron, submillisecond resolution, Methods Enzymol, 1998, 291, 356–380.

    Article  CAS  PubMed  Google Scholar 

  137. E. B. Brown, J. B. Shear, S. R. Adams, R. Y. Tsien and W. W. Webb, Photolysis of caged calcium in femtoliter volumes using two-photon excitation, Biophys. J., 1999, 76, 489–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. A. Hopt and E. Neher, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J., 2001, 80, 2029–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. P. Lipp and E. Niggli, Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes, J. Physiol, 1998, 508, 801–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. I. Schlichting, Crystallographic structure determination of unstable species, Acc. Chem. Res, 2000, 33, 532–538.

    Article  CAS  PubMed  Google Scholar 

  141. K. Moffat, Time-resolved biochemical crystallography: A mechanistic perspective, Chem. Rev., 2001, 101, 1569–1581.

    Article  CAS  PubMed  Google Scholar 

  142. V. Srajer, T.-Y. Teng, T. Ursby, C. Pradervand, Z. Ren, S.-I. Adachi, W. Schildkamp, D. Bourgeois, M. Wulff and K. Moffat, Photolysis of the carbon monoxide complex of myoglobin: Nanosecond time-resolved crystallography, Science, 1996, 274, 1726–1729.

    Article  CAS  PubMed  Google Scholar 

  143. A. Specht, T. Ursby, M. Weik, L. Peng, J. Kroon, D. Bourgeois and M. Goeldner, Cryophotolysis of ortho-nitrobenzyl derivatives of enzyme ligands for the potential kinetic crystallography of macromolecules, ChemBioChem, 2001, 11, 845–848.

    Article  Google Scholar 

  144. I. Schlichting, S. C. Almo, G. Rapp, K. Wilson, K. Petratos, A. Lentfer, A. Wittinghofer, W. Kabsch, E. F Pai, G. A. Petsko and R. S. Goody, Time-resolved X-ray crystallographic study of the conformational change in Ha-ras p21 protein on GTP hydrolysis, Nature, 1990, 345, 309–315

    Article  CAS  PubMed  Google Scholar 

  145. I. Schlichting, G. Rapp, J. John, A. Wittinghofer, E. F. Pai and R. S. Goody, Biochemical and crystallographic characterization of a complex of c-Ha-ras p21 and caged GTP with flash photolysis, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 7687–7690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. B. E. Cohen, B. L. Stoddard and D. E. Koshland, Jr., Caged NADP and NAD. Synthesis and characterization of functionally distinct caged compounds, Biochemistry, 1997, 36, 9035–9044

    Article  CAS  PubMed  Google Scholar 

  147. B. L. Stoddard, B. E. Cohen, M. Brubaker, A. D. Mesecar and D. E. Koshland, Jr., Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs, Nat. Struct. Biol, 1998, 5, 891–897.

    Article  CAS  PubMed  Google Scholar 

  148. M. J. Brubaker, D. H. Dyer, B. Stoddard and D. E. Koshland, Jr., Synthesis, kinetics and structural studies of a photolabile caged isocitrate: A catalytic trigger for isocitrate dehydrogenase, Biochemistry, 1996, 35, 2854–2864.

    Article  CAS  PubMed  Google Scholar 

  149. L. Peng, J. Wirz and M. Goeldner, Synthesis and characterization of photolabile compounds releasing noracetylcholine in the microsecond time range, Angew. Chem., Int. Ed. Engl, 1997, 36, 398–400

    Article  CAS  Google Scholar 

  150. A. Specht, M. Goeldner, J. Wirz and L. Peng, Characterization of caged cholinergic ligands; sulfonated calix[4]arene inclusion complexes, Synlett, 1999, S1, 981–983

    Article  Google Scholar 

  151. L. Peng, J. Wirz and M. Goeldner, 2-nitrobenzyl quaternary ammonium derivatives photoreleasing nor-butyrylcholine in the microsecond time range, Tetrahedron Lett., 1997, 38, 2961–2964

    Article  CAS  Google Scholar 

  152. L. Peng, I. Silman, J. Sussman and M. Goeldner, Biochemical evaluation of photolabile precursors of choline and of carbamylcholine for potential time-resolved studies on cholinesterases, Biochemistry, 1996, 35, 10854–10861.

    Article  CAS  PubMed  Google Scholar 

  153. W. A. Eaton, V. Muñoz, P. A. Thompson, E. R. Henry and J. Hofrichter, Kinetics and dynamics of loops, a-helices, ß-hairpins, and fast-folding proteins, Acc. Chem. Res, 1998, 31, 745–753.

    Article  CAS  Google Scholar 

  154. S. Abbruzzetti, E. Crema, L. Masino, A. Vecli, C. Viappiani, J. R. Small, L. J. Libertini and E. W. Small, Fast events in protein folding: Structural volume changes accompanying the early events in the N→I transition of apomyoglobin induced by ultrafast pH jump, Biophys. J., 2000, 78, 405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. S. Abbruzzetti, C. Viappiani, J. R. Small, L. J. Libertini and E. W. Small, Kinetics of local helix formation in poly-l-glutamic acid studied by time-resolved photoacoustics: Neutralization reactions of carboxylates in aqueous solutions and their relevance to the problem of protein folding, Biophys. J., 2000, 79, 2714–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. S. Abbruzzetti, C. Viappiani, J. R. Small, L. J. Libertini and E. W. Small, Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(iii) cytochrome c studied by a laser-induced pH-jump technique, J. Am. Chem. Soc, 2001, 123, 6649–6653.

    Article  CAS  PubMed  Google Scholar 

  157. R. R. Hudgins, F Huang, G Gramlich and W M. Nau, A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: An exploratory study with polypeptides, J. Am. Chem. Soc, 2002, 124, 556–564

    Article  CAS  PubMed  Google Scholar 

  158. O. Bieri, J. Wirz, B. Hellrung, M. Schutkowski, M. Drewello and T. Kiefhaber, The speed limit for protein folding measured by triplet-triplet energy transfer, Proc. Natl. Acad Sci. U. S. A., 1999, 96, 9597–9601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. H. S. M. Lu, M. Volk, Y. Kholodenko, E. Gooding, R. M. Hochstrasser and W. F. DeGrado, Aminothiotyrosine disulfide, an optical trigger for initiation of protein folding, J. Am. Chem. Soc, 1997, 119, 7173–7180

    Article  CAS  Google Scholar 

  160. M. Volk, Y. Kholodenko, H. S. M. Lu, E. A. Gooding, W. F. DeGrado and R. M. Hochstrasser, Peptide conformational dynamics and vibrational Stark effects following photoinitiated disulfide cleavage, J. Phys. Chem. B, 1997, 101, 8607–8616.

    Article  CAS  Google Scholar 

  161. W. T. Monroe, M. M. McQuain, M. S. Chang, J. S. Alexander and F. R. Haselton, Targeting expression with light using caged DNA, J. Biol. Chem., 1999, 274, 20895–20900.

    Article  CAS  PubMed  Google Scholar 

  162. H. Ando, T. Furuta, R. Y. Tsien and H. Okamoto, Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos, Nat. Genet., 2001, 28, 317–325.

    Article  CAS  PubMed  Google Scholar 

  163. S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. Tsai Lu and D. Solas, Light-directed, spatially addressable parallel chemical synthesis, Science, 1991, 251, 767–773

    Article  CAS  PubMed  Google Scholar 

  164. M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris and S. P. A. Fodor, Accessing genetic information with high-density DNA arrays, Science, 1996, 274, 610–614.

    Article  CAS  PubMed  Google Scholar 

  165. A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes and S. P. A. Fodor, Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. Natl. Acad Sci. U. S. A., 1994, 91, 5022–5026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. S. A. Sundberg, R. W. Barrett, M. Pirrung, A. L. Lu, B. Kiangsoontra and C. P. Holmes, Spatially-addressable immobilization of macromolecules on solid supports, J. Am. Chem. Soc, 1995, 117, 12050–12057.

    Article  CAS  Google Scholar 

  167. T. Vossmeyer, S. Jia, E. DeIonno, M. R. Diehl, S.-H. Kim, X. Peng, A. P. Alivisatos and J. R. Heath, Combinatorial approaches toward patterning nanocrystals, J. Appl. Phys, 1998, 84, 3664–3670

    Article  CAS  Google Scholar 

  168. T. Vossmeyer, E. DeIonno and J. R. Heath, Light-directed assembly of nanoparticles, Angew. Chem., Int. Ed. Engl, 1997, 36, 1080–1083.

    Article  CAS  Google Scholar 

  169. J.-M. Kim, T.-E. Chang, R. H. Park, D. J. Kim, D. K. Han and K.-D. Ahn, Generation of patterned color images in polymer film with photogenerated base, Chem. Lett., 2000, 712–713.

    Google Scholar 

  170. H. Shiono, H. Nohta, C. Utsuyama and M. Hiramatsu, New method for adding reagents: An application of caged molecules to analytical chemistry, Anal. Chim. Acta, 2000, 405, 17–21.

    Article  CAS  Google Scholar 

  171. M. Smet, L.-X. Liao, W. Dehaen and D. V. McGrath, Photolabile dendrimers using o-nitrobenzyl ether linkages, Org. Lett., 2000, 2, 511–513.

    Article  CAS  PubMed  Google Scholar 

  172. S. Watanabe, M. Sato, S. Sakamoto, K. Yamaguchi and M. Iwamura, New dendritic caged compounds: Synthesis, mass spectrometric characterization, and photochemical properties of dendrimers with a-carboxy-2-nitrobenzyl caged compounds at their periphery, J. Am. Chem. Soc, 2000, 122, 12588–12589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Wirz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelliccioli, A.P., Wirz, J. Photoremovable protecting groups: reaction mechanisms and applications. Photochem Photobiol Sci 1, 441–458 (2002). https://doi.org/10.1039/b200777k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b200777k

Navigation