Issue 10, 2001

Conformational landscapes of aromatic amino acids in the gas phase: Infrared and ultraviolet ion dip spectroscopy of tryptophan

Abstract

The conformational structures of tryptophan, isolated in the gas phase, have been assigned by combining the results of ultraviolet hole-burning and infrared ion dip spectroscopy with the predictions of ab initio calculations conducted at the MP2/6-311 + G(d,p)//B3LYP/6-31 + G(d) levels of theory. As in phenylalanine, the most strongly populated, and lowest energy conformer presents a folded alanyl side chain that is stabilised by a ‘daisy chain’ of hydrogen-bonded interactions. These link the acidic proton, the amino group and the indole ring. There is a further interaction between the carbonyl oxygen and the neighbouring CH group on the pyrrole ring. A quantitative evaluation of the dipole–dipole interactions between the alanyl side chain and the indole ring in the 1La and 1Lb electronic states does not support the suggestion of electronic state mixing. In particular it casts doubt on the assignment of the fluorescence of the most stable, ‘special’ conformer to emission from the 1La state.

Article information

Article type
Paper
Submitted
08 Feb 2001
Accepted
21 Mar 2001
First published
11 Apr 2001

Phys. Chem. Chem. Phys., 2001,3, 1819-1826

Conformational landscapes of aromatic amino acids in the gas phase: Infrared and ultraviolet ion dip spectroscopy of tryptophan

L. C. Snoek, R. T. Kroemer, M. R. Hockridge and J. P. Simons, Phys. Chem. Chem. Phys., 2001, 3, 1819 DOI: 10.1039/B101296G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements