Issue 7, 2022

Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis

Abstract

The field of proteomics is continually improving, requiring the development of new quantitative methods. Stable isotope labeling in cell culture (SILAC) is a metabolic labeling technique originating in the early 2000s. By incorporating isotopically labeled amino acids into the media used for cell culture, unlabeled versus labeled cells can be differentiated by the mass spectrometer. Traditional SILAC labeling has been expanded to pulsed applications allowing for a new quantitative dimension of proteomics – temporal analysis. The complete introduction of Heavy SILAC labeling chased with surplus unlabeled medium mimics traditional pulse-chase experiments and allows for the loss of heavy signal to track proteomic changes over time. In a similar fashion, pulsed SILAC (pSILAC) monitors the initial incorporation of a heavy label across a period of time, which allows for the rate of protein label integration to be assessed. These innovative techniques have aided in inspiring numerous SILAC-based temporal and spatial labeling applications, including super SILAC, spike-in SILAC, spatial SILAC, and a revival in label multiplexing. This review reflects upon the evolution of SILAC and the pulsed SILAC application, introduces advances in SILAC labeling, and proposes future perspectives for this novel and exciting field.

Graphical abstract: Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis

Article information

Article type
Review Article
Submitted
08 Mar 2022
Accepted
09 Jun 2022
First published
13 Jun 2022

Mol. Omics, 2022,18, 579-590

Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis

N. C. Beller and A. B. Hummon, Mol. Omics, 2022, 18, 579 DOI: 10.1039/D2MO00077F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements