Issue 29, 2020

Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts

Abstract

In the last decade we have witnessed increasing interest in the production of renewable energy and value-added chemicals through sustainable and low-cost technologies where catalysts play a crucial role. Herein, we report the application of a Ru/CNT material containing a mixture of Ru single atoms and Ru nanoparticles as a multifunctional catalyst for both the catalytic reduction of nitroarenes and the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The catalytic activity of the Ru-CNT material was evaluated in the reduction of 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitrophenol (2-NP) in the presence of sodium borohydride as a reducing agent at room temperature, showing high catalytic activity with normalized rate constants (knor) of 19.0 × 103, 57.7 × 103 and 16.6 × 103 min−1 mmol−1 respectively. Furthermore, the catalyst could be reused in at least 10 cycles without catalytic activity loss, confirming the high stability and robustness of the material. The Ru/CNT material also showed good ORR electrocatalytic activity in alkaline medium with Eonset of 0.76 V vs. RHE, a diffusion-limited current density of 3.89 mA cm−2 and ñO2 of 3.3. In addition, Ru/CNT was remarkably insensitive to methanol with a current retention of 93% (51% for Pt/C) and competitive electrochemical stability of 80% after 20 000 s. Moreover, Ru/CNT was active for the OER with jmax = 29.5 mA cm−2 at E = 1.86 V vs. RHE, η10 = 0.50 V and good stability (η10 changed to 0.01 V and jmax only decreased by ≈12% after 500 cycles).

Graphical abstract: Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2020
Accepted
29 Jun 2020
First published
29 Jun 2020

Dalton Trans., 2020,49, 10250-10260

Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts

D. M. Fernandes, M. Rocha, C. Rivera-Cárcamo, P. Serp and C. Freire, Dalton Trans., 2020, 49, 10250 DOI: 10.1039/D0DT02096F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements