Skip to main content

Advertisement

Log in

Changes in the total ozone content over the period 2006 to 2100 and the effects on the erythemal and vitamin D effective UV doses for South America and Antarctica

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Recent studies show that the ozone layer will recover by the middle part of this century. This is a significant result arising from the Montreal Protocol, and highlights the success of this environmental protection agreement. Climate change projections show that Total Ozone Content (TOC) levels will increase significantly by the end of this century, mainly at higher latitudes. This increase may result in a reduction of the adverse effects of UV radiation overexposure. By contrast, reduced UV radiation levels at the surface of the Earth can result in reduced levels of vitamin D synthesis among the inhabitants of these regions. In this study we provide estimates for the UVI, erythemal, and vitamin-D weighted daily doses for ten different locations in South America and Antarctica. Our calculations were based on ozone projections provided by climate models set forth in the last IPCC report. Results show that the increase of TOC levels in middle and high latitude regions may result in decreased UVI and UV doses throughout the century. In high latitudes, erythemal doses and vitamin D synthesis doses may be reduced by up to 22 and 39%, respectively, if anthropogenic emissions continue to rise throughout the century. Furthermore, there may be reductions of up to 9 and 12%, respectively, in mid-latitudes (20°S to 35°S). Significant variations at Equatorial sites were not observed. In most of South America, the attenuation in UVR caused by increases in TOC during the 21st century is neither enough to promote protective effects from this radiation, nor for the lack of UVR for vitamin D synthesis. The incidence of UVR in tropical and sub-tropical areas of the continent will continue to be a public health risk for the entire 21st century during all seasons, regardless of the climatic scenarios. Our results can be used as an important tool for health studies focusing on the excess and/or lack of sun exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. S. Dhomse, D. Kinnison, M. P. Chipperfield, et al., Estimates of ozone return dates from Chemistry-Climate model initiative simulations, Atmos. Chem. Phys., 2018, 18, 8409, DOI: 10.5194/acp-18-8409-2018.

  2. S. Meul, M. Dameris, U. Langematz, J. Abalichin, A. Kerschbaumer, A. Kubin and S. Oberländer-Hayn, Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure, Geophys. Res. Lett., 2016, 43, 2919, DOI: 10.1002/2016GL067997.

  3. S. Gorman, R. M. Lucas, A. Allen-Hall, N. Fleury and M. Feelisch, Ultraviolet radiation, vitamin D and the development of obesity, metabolic syndrome and type-2 diabetes, Photochem. Photobiol. Sci., 2017, 16, 362–373, DOI: 10.1039/C6PP00274A.

  4. R. Greinerta, E. de Vries, F. Erdmann, C. Espina, A. Auvinen, A. Kesminiene and J. Schüz, European Code against Cancer 4th Edition: Ultraviolet radiation and cancer, Cancer Epidemiol., 2015, 39, S75–S83, DOI: 10.1016/j.canep.2014.12.014.

  5. S. Löfgren, Solar ultraviolet radiation cataract, Exp. Eye Res., 2017, 156, 112–116, DOI: 10.1016/j.exer.2016.05.026.

  6. P. A. Newman and R. McKenzie, UV impacts avoided by the Montreal Protocol, Photochem. Photobiol. Sci., 2011, 10, 1152, DOI: 10.1039/c0pp00387e.

  7. A. van Dijk, H. Slaper, P. N. den Outer, O. Morgenstern, P. Braesicke, J. A. Pyle, H. Garny, A. Stenke, M. Dameris, A. Kazantzidis, K. Tourpali and A. F. Bais, Skin Cancer Risks Avoided by the Montreal Protocol—Worldwide Modeling Integrating Coupled Climate-Chemistry Models with a Risk Model for UV, Photochem. Photobiol., 2013, 89, 234, DOI: 10.1111/j.1751-1097.2012.01223.x.

  8. M. P. Corrêa, S. Godin-Beekmann, M. Haeffelin, S. Bekki, P. Saiag, J. Badosa, F. Jégou, A. Pazmiño and E. Mahé, Projected changes in clear-sky erythemal and vitamin D effective UV doses for Europe over the period 2006 to 2100, Photochem. Photobiol. Sci., 2013, 12, 1053, DOI: 10.1039/c3pp50024a.

  9. A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Mandronich and K. Tourpali, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2015, 14, 19, DOI: 10.1039/c4pp90032d.

  10. M. P. Corrêa and L. C. Pires, Doses of erythemal ultraviolet radiation observed in Brazil, Int. J. Dermatol., 2013, 52, 966.

    Article  Google Scholar 

  11. F. Zaratti, R. D. Piacentini, H. A. Guillén, S. H. Cabrera, J. B. Liley and R. L. McKenzie, Proposal for a modification of the UVI risk scale, Photochem. Photobiol. Sci., 2014, 13, 980, DOI: 10.1039/c4pp00006d.

  12. S. Solomon, D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely III and A. Schmidt, Emergence of healing in the Antarctic ozone layer, Science, 2016, 353, 269, DOI: 10.1126/science.aae0061.

  13. INCA – Brazilian National Cancer Institute, Ministry of Health. Estimates 2018: Cancer Incidence in Brazil, [www document], available at: http://www1.inca.gov.br/inca/Arquivos/estimativa-2018.pdf.

  14. M. F. Holick, The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention, Rev. Endocr. Metab. Disord., 2017, 18, 153, DOI: 10.1007/s11154-017-9424-1.

  15. M. R. M. C. do Prado, F. de, C. C. Oliveira, K. F. Assis, S. A. V. Ribeiro, P. P. do Prado, L. F. da R. Sant’Ana and S. do C. C. Franceschini, Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period, Rev. Paul. Pediatr., 2015, 33, 286, DOI: 10.1016/j.rpped.2015.01.006.

  16. B. R. Santos, L. P. G. Mascarenhas, F. Satler, M. C. S. Boguszewski and P. M. Spritzer, Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants, BMC Pediatr., 2012, 12, 62, DOI: 10.1186/1471-2431-12-62.

  17. U. Cubasch, D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald and J. G. Winther, Introduction, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, 2013, p. 120.

  18. WCRP, Coupled Model Intercomparison Project – Phase 5, Special Issue of the CLIVAR Exchanges Newsletter, 2011, 15 2.

  19. S. Madronich and S. Flocke, Theoretical estimation of biologically effective UV radiation at the Earth’s surface, in Solar Ultraviolet Radiation - Modeling, Measurements and Effects, ed. C. Zerefos, NATO ASI Series Vol. I52, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  20. ISO/CIE 1999, ISO 17166:1999(E)/CIE S 007/E-1998: Joint ISO/CIE Standard: Erythema Reference Action Spectrum and Standard Erythema Dose, Geneva: ISO/Vienna: CIE.

  21. CIE, Action spectrum for the production of previtamin D3 in human skin, International Commission on Illumination, Technical Report 174, 2006.

  22. F. Murtagh and P. Contreras, Algorithms for hierarchical clustering: an overview, Data Min. Knowl. Discov., 2012, 2, 86–97, DOI: 10.1002/widm.53.

  23. F. Murtagh and P. Contreras, Algorithms for hierarchical clustering: an overview II, Data Min. Knowl. Discov., 2017, 7, e1219, DOI: 10.1002/widm.1219.

  24. M. Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J.-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders and D. P. P. van Vuuren, The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Change, 2011, 109, 213, DOI: 10.1007/s10584-011-0156-z.

  25. D. P. P. Van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. J. Smith and S. K. Rose, The representative concentration pathways: an overview, Clim. Change, 2011, 109, 5, DOI: 10.1007/s10584-011-0148-z.

  26. WHO, World Health Organization, Global Solar UV Index: A Practical Guide, 2002, WHO/SDE/OEH/02.2, p. 28.

  27. V. Fioletov, J. B. Kerr and A. Fergusson, The UV Index: Definition, Distribution and Factors Affecting It, Can. J. Public Health, 2010, 101, I5.

  28. R. M. Lucas, R. E. Neale, S. Madronich and R. L. McKenzie, Are current guidelines for sun protection optimalfor health? Exploring the evidence, Photochem. Photobiol. Sci., 2018, 17, 1956, DOI: 10.1039/C7PP00374A.

  29. A. van Dijk, P. den Outer, H. van Kranen and H. Slaper, The action spectrum for vitamin D3: initial skin reaction and prolonged exposure, Photochem. Photobiol. Sci., 2016, 15, 896–909, DOI: 10.1039/C6PP00034G.

  30. T. B. Fitzpatrick, The Validity and Practicality of Sun-Reactive Skin Types I throught VI, Arch. Dermatol., 1988, 124, 869.

    Article  CAS  Google Scholar 

  31. D. Balis, M. Kroon, M. E. Koukouli, E. J. Brinksma, G. Labow, J. P. Veefkind and R. D. McPeters, Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 2007, 112, D24S64, DOI: 10.1029/2007JD008796.

  32. R. L. McKenzie, J. B. Liley and L. O. Björn, UV radiation: Balancing risks and benefits, Photochem. Photobiol., 2009, 85, 88–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Corrêa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, M.P., Yamamoto, A.L.C., Moraes, G.R. et al. Changes in the total ozone content over the period 2006 to 2100 and the effects on the erythemal and vitamin D effective UV doses for South America and Antarctica. Photochem Photobiol Sci 18, 2931–2941 (2019). https://doi.org/10.1039/c9pp00276f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00276f

Navigation